COMPSCI 501: Formal Language Theory
Lecture 10: Pumping Lemma for CFL

Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

13 February 2019

Recall: Pumping Lemma for Regular Languages

If Ais a regular language, there is a number p (pumping length) so
that any string in A of length at least p can be divided into three
pieces, s = zyz, with the conditions

1. zy'z € A for any i > 0

2.yl >0

3. |yl <p
(1) tells us string y can be repeated (pumped) any number of times
(2) y is nonempty (else trivially true)
(3) says y found “early enough” (up to length p)

One-way Implication:

» if a language is regular, it can be pumped
» but if language can be pumped, it may or may not be regular

Pumping Lemma for Context-Free Languages

If Ais a context-free language, there is a number p (pumping
length) so that any string in A of length at least p can be divided
into five pieces, s = uvayz, with the conditions

1. wv'zy'z € A forany i >0

2. |vy] >0

3. Jozy| < p

(1): we can pump second and fourth string any number of times

(2): at least one of the two pumped strings is nonempty
(3): the three middle pieces have length at most p

Again, this is an implication, not an equivalence
(there are pumpable languages that are not context free)

CFL Pumping Lemma: Intuition

Work with parse trees of grammar

Find a nonterminal that repeats along a path, and graft trees
pump up: larger tree replaces smaller
pump down: smaller tree replaces larger

Proof: Choosing pumping length

Let V' be the set of variables in the grammar

Let b be the max. number of symbols on a RHS
= tree nodes have at most b children
= length of sentence is < b" (h = tree height)

Choose p = bIVI+1 > bVl = parse tree height > |V| + 1
Why not bV! + 1?7 Will see for condition (3).

Proof: Pumping is possible

Let s with |s| > p. Choose smallest parse tree for s.

Some path from root has length > |[V| +1 =
some variable (not terminal node) repeats.
Consider R that repeats among lowest |V| 4 1 variables

R vRy = vay
T Lower R generates x
Upper R generates vxy
pump up: replace lower R with upper R
from wvzyz to uv’zry?z to . ..
pump down: replace upper R with lower R
from uvzyz to uzxz

Proof: Conditions 2 and 3

(2) Could it be that v and y are both empty?

If so, top R also generates = = exe
Replacing with lower R gives smaller parsing tree for s
= contradicts minimal choice

(3) Do we have jvzy| <p?

We chose repeated node R among lowest |V| 4 1 variables
parse tree at top R has height < |[V|+1
generated string has < pVIHL = symbols

Pumping Lemma Examples: a"b"c"

{a™"c"|n > 0} is not context free
Usual string choice: aPbPcP
» Case 1: both v and y contain at most one type of symbol

repeated symbols: at least one (Juy| > 0), at most two
= won't have all three at same number

» Case 2: v or y contain more than one type of symbol pause

will have symbols out of order (ba, cb, or ca)

Pumping Lemma Examples: a’b/c* increasing counts
{a*ick|0 <4 < j < k} is not context free
Same string choice: aPbPcP. Same cases, 1 more tricky
» Case 1: both v and y contain at most one type of symbol

Consider symbol that does not appear in either.
» a does not appear
Pump down: uv®zy®z: same #a, smaller #b or #c, ¢ L

» b does not appear
If @ appears, pump up: uv?zy?z has more a's than b's.
If ¢ appears, pump up down: uv’zy%z has more b’s than ¢'s.

» ¢ does not appear
Pump up: uv?zy?z has more a's or b's than ¢'s

» Case 2: v or y contain more than one type of symbol pause

will have symbols out of order (ba, cb, or ca)

Pumping Lemma Examples: ww

{ww|w € {0,1}*} is not context free
Usual choice 0P10P1 does not work. could have v =y = 0.
Try 0P1POP1P.

If vy in first half, pumping up “lengthens” first part, so second half
now starts with 1, wrong.
Symmetric for second half.

If vy straddles center, and is < p, by pumping down we get
0P1*071P, with @ < p or j < p, also not ww

Wrapping up: Closure of CFL under Language Operations

» Concatenation L = L1Ly S — 5159

» Union L=L; ULy S — 5|5

> Kleene Star L=L7 S —¢|51S

» Homomorphism: replace symbols by strings

» Inverse homomorphism: replace string by symbol
Not closed under:

> Intersection (homework)

» Difference (would imply intersection): ANB = A\ (A\ B)

» Complement (with union, would imply intersection):
ANB=AUB

Deterministic PDA and CFL

DPDA: make NFA control deterministic instead

not the same as DFA (e transitions for stack and input), but
deterministic:

Transition function § : Q x % x I'e = Q x I' U {0}

From every state, can have
e-input moves or consume input, not both
e-stack moves or use stack, not both

Formally, for every ¢ € Q,a € ¥,z € T, exactly one of
4(q,a,2),0(q,a,€),8(q,e,2) and &(g,e,¢€) is not (.

Accept if state accepting after end of input
Reject if not, or fails to read entire input
(incl. block on pop from empty stack, or infinite e-loop)

Some DCFLs are not CFLs

DCFLs = languages recognized by DPDAs.

Examples: {0™1"|n > 0} is DCFL.

{a'bick|i = j or i = k} and {ww"|w € {0,1}*} are not DCFL.
Theorem: The class of DCFLs is closed under complementation.
Not quite as simple as swapping accept and non-accept states.
Corollary: A language whose complement isn't a CFL is not DCFL.
Example: {a*bc¥|i # j or j # k} is not DCFL.

If it were, then AN a*b*c* = {a"b"c"} would be context free.

