
COMPSCI 501: Formal Language Theory
Lecture 10: Pumping Lemma for CFL

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

13 February 2019

Recall: Pumping Lemma for Regular Languages

If A is a regular language, there is a number p (pumping length) so
that any string in A of length at least p can be divided into three
pieces, s = xyz, with the conditions

1. xyiz ∈ A for any i ≥ 0
2. |y| > 0
3. |xy| ≤ p

(1) tells us string y can be repeated (pumped) any number of times
(2) y is nonempty (else trivially true)
(3) says y found “early enough” (up to length p)

One-way Implication:
I if a language is regular, it can be pumped
I but if language can be pumped, it may or may not be regular

Pumping Lemma for Context-Free Languages

If A is a context-free language, there is a number p (pumping
length) so that any string in A of length at least p can be divided
into five pieces, s = uvxyz, with the conditions
1. uvixyiz ∈ A for any i ≥ 0
2. |vy| > 0
3. |vxy| ≤ p
(1): we can pump second and fourth string any number of times
(2): at least one of the two pumped strings is nonempty
(3): the three middle pieces have length at most p

Again, this is an implication, not an equivalence
(there are pumpable languages that are not context free)

CFL Pumping Lemma: Intuition

Work with parse trees of grammar

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbol R
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbol R
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Find a nonterminal that repeats along a path, and graft trees
pump up: larger tree replaces smaller
pump down: smaller tree replaces larger

Proof: Choosing pumping length

Let V be the set of variables in the grammar
Let b be the max. number of symbols on a RHS
⇒ tree nodes have at most b children
⇒ length of sentence is ≤ bh (h = tree height)

Choose p = b|V |+1 > b|V | ⇒ parse tree height ≥ |V |+ 1

Why not b|V | + 1? Will see for condition (3).

Proof: Pumping is possible

Let s with |s| ≥ p. Choose smallest parse tree for s.

Some path from root has length ≥ |V |+ 1 ⇒
some variable (not terminal node) repeats.

Consider R that repeats among lowest |V |+ 1 variables

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbol R
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

R
∗⇒ vRy

∗⇒ vxy
Lower R generates x
Upper R generates vxy
pump up: replace lower R with upper R
from uvxyz to uv2xy2z to . . .

pump down: replace upper R with lower R
from uvxyz to uxz

Proof: Conditions 2 and 3

(2) Could it be that v and y are both empty?

If so, top R also generates x = εxε
Replacing with lower R gives smaller parsing tree for s
⇒ contradicts minimal choice

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbol R
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

(3) Do we have |vxy| ≤ p ?

We chose repeated node R among lowest |V |+ 1 variables
parse tree at top R has height ≤ |V |+ 1
generated string has ≤ b|V |+1 = p symbols

Pumping Lemma Examples: anbncn

{anbncn|n ≥ 0} is not context free
Usual string choice: apbpcp

I Case 1: both v and y contain at most one type of symbol

repeated symbols: at least one (|vy| > 0), at most two
⇒ won’t have all three at same number
I Case 2: v or y contain more than one type of symbol pause

will have symbols out of order (ba, cb, or ca)

Pumping Lemma Examples: aibjck increasing counts
{aibjck|0 ≤ i ≤ j ≤ k} is not context free
Same string choice: apbpcp. Same cases, 1 more tricky
I Case 1: both v and y contain at most one type of symbol

Consider symbol that does not appear in either.
I a does not appear

Pump down: uv0xy0z: same #a, smaller #b or #c, /∈ L
I b does not appear

If a appears, pump up: uv2xy2z has more a’s than b’s.
If c appears, pump up down: uv0xy0z has more b’s than c’s.

I c does not appear
Pump up: uv2xy2z has more a’s or b′s than c’s

I Case 2: v or y contain more than one type of symbol pause

will have symbols out of order (ba, cb, or ca)

Pumping Lemma Examples: ww

{ww|w ∈ {0, 1}∗} is not context free
Usual choice 0p10p1 does not work. could have v = y = 0.

Try 0p1p0p1p.

If vxy in first half, pumping up “lengthens” first part, so second half
now starts with 1, wrong.
Symmetric for second half.

If vxy straddles center, and is ≤ p, by pumping down we get
0p1i0j1p, with i < p or j < p, also not ww

Wrapping up: Closure of CFL under Language Operations

I Concatenation L = L1L2 S → S1S2

I Union L = L1 ∪ L2 S → S1|S2

I Kleene Star L = L∗1 S → ε|S1S

I Homomorphism: replace symbols by strings
I Inverse homomorphism: replace string by symbol

Not closed under:
I Intersection (homework)
I Difference (would imply intersection): A ∩B = A \ (A \B)
I Complement (with union, would imply intersection):
A ∩B = A ∪B

Deterministic PDA and CFL

DPDA: make NFA control deterministic instead

not the same as DFA (ε transitions for stack and input), but
deterministic:

Transition function δ : Q× Σε × Γε → Q× Γε ∪ {∅}
From every state, can have
ε-input moves or consume input, not both
ε-stack moves or use stack, not both

Formally, for every q ∈ Q, a ∈ Σ, x ∈ Γ, exactly one of
δ(q, a, x), δ(q, a, ε), δ(q, ε, x) and δ(q, ε, ε) is not ∅.

Accept if state accepting after end of input
Reject if not, or fails to read entire input
(incl. block on pop from empty stack, or infinite ε-loop)

Some DCFLs are not CFLs

DCFLs = languages recognized by DPDAs.

Examples: {0n1n|n ≥ 0} is DCFL.
{aibjck|i = j or i = k} and {wwr|w ∈ {0, 1}∗} are not DCFL.

Theorem: The class of DCFLs is closed under complementation.

Not quite as simple as swapping accept and non-accept states.

Corollary: A language whose complement isn’t a CFL is not DCFL.

Example: {aibjck|i 6= j or j 6= k} is not DCFL.
If it were, then Ā ∩ a∗b∗c∗ = {anbncn} would be context free.

