	Recall: Pumping Lemma for Regular Languages
COMPSCI 501: Formal Language Theory Lecture 10: Pumping Lemma for CFL Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	If A is a regular language, there is a number p (pumping length) so that any string in A of length at least p can be divided into three pieces, $s = xyz$, with the conditions 1. $xy^iz \in A$ for any $i \ge 0$ 2. $ y > 0$ 3. $ xy \le p$ (1) tells us string y can be repeated (pumped) any number of times (2) y is nonempty (else trivially true) (3) says y found "early enough" (up to length p) One-way Implication: • if a language is regular, it can be pumped • but if language can be pumped, it may or may not be regular
Pumping Lemma for Context-Free Languages	CFL Pumping Lemma: Intuition
If A is a context-free language, there is a number p (pumping length) so that any string in A of length at least p can be divided into five pieces, $s = uvxyz$, with the conditions 1. $uv^ixy^iz \in A$ for any $i \ge 0$ 2. $ vy > 0$ 3. $ vxy \le p$ (1): we can pump second and fourth string any number of times (2): at least one of the two pumped strings is nonempty (3): the three middle pieces have length at most p Again, this is an <i>implication</i> , not an <i>equivalence</i> (there are pumpable languages that are not context free)	Work with parse trees of grammar $ \underbrace{\begin{array}{c} T\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Proof: Choosing pumping length	Proof: Pumping is possible
Let V be the set of variables in the grammar Let b be the max. number of symbols on a RHS \Rightarrow tree nodes have at most b children \Rightarrow length of sentence is $\leq b^h$ ($h =$ tree height) Choose $p = b^{ V +1} > b^{ V } \Rightarrow$ parse tree height $\geq V + 1$ Why not $b^{ V } + 1$? Will see for condition (3).	Let s with $ s \ge p$. Choose <i>smallest</i> parse tree for s . Some path from root has length $\ge V + 1 \Rightarrow$ some <i>variable</i> (not terminal node) repeats. Consider R that repeats among lowest $ V + 1$ variables $R \stackrel{*}{\Rightarrow} vRy \stackrel{*}{\Rightarrow} vxy$ Lower R generates x Upper R generates x Upper R generates vxy pump up: replace lower R with upper R from $uvxyz$ to uv^2xy^2z to pump down: replace upper R with lower R from $uvxyz$ to uxz

Proof: Conditions 2 and 3	Pumping Lemma Examples: $a^{n}b^{n}c^{n}$
Froor. Conditions 2 and 5	Fumping Lemma Examples. <i>a o c</i>
(2) Could it be that v and y are both empty? If so, top R also generates $x = \varepsilon x \varepsilon$	
Replacing with lower R gives smaller parsing tree for s \Rightarrow contradicts minimal choice	$\{a^nb^nc^n n\geq 0\}$ is not context free
	Usual string choice: $a^p b^p c^p$
	Case 1: both v and y contain at most one type of symbol repeated symbols; at least one (lawl > 0) at most two
İ. İ.	\Rightarrow won't have all three at same number
u v x y 2	Ease 2: v or y contain more than one type of symbol pause
(3) Do we have $ vxy \leq p$?	will have symbols out of order $(ba, cb, or ca)$
We chose repeated node R among lowest $ V +1$ variables parse tree at top R has height $\leq V +1$ generated string has $\leq b^{ V +1}=p$ symbols	
Pumping Lemma Examples: $a^i b^j c^k$ increasing counts	Pumping Lemma Examples: ww
$\{a^i b^j c^k 0 \leq i \leq j \leq k\}$ is not context free	
Same string choice: $a^p b^p c^p$. Same cases, 1 more tricky	
• Case 1: both v and y contain at most one type of symbol	$\{ww w \in \{0,1\}^*\}$ is not context free
Consider symbol that does <i>not</i> appear in either.	Such choice $0^{r}10^{r}1$ does not work. Could have $v = y = 0$. Try $0^{p}1^{p}0^{p}1^{p}$
Pump down: uv^0xy^0z : same #a, smaller #b or #c, $\notin L$	If vxu in first half, pumping up "lengthens" first part, so second half
b does not appear If a appears, pump up: uv^2xy^2z has more a's than b's. If c appears, pump up down: uv^0xy^0z has more b's than c's.	now starts with 1, wrong. Symmetric for second half.
c does not appear Pump up: uv^2xy^2z has more a's or b's than c's	If vxy straddles center, and is $\leq p$, by pumping down we get $0^p1^i0^j1^p,$ with $i < p$ or $j < p,$ also not ww
• Case 2: v or y contain more than one type of symbol pause	
will have symbols out of order (ba , cb , or ca)	
Wrapping up: Closure of CFL under Language Operations	Deterministic PDA and CFL
	DPDA: make NFA control deterministic instead
Concatenation $L = L_1 L_2$ $S \rightarrow S_1 S_2$	not the same as DFA ($arepsilon$ transitions for stack and input), but
$L = L_1 \cup L_2 S \to S_1 S_2$ $k \text{ Kleene Star } L = L_1^* S \to \varepsilon S_1 S$	deterministic: Transition function $f : O \times \Sigma \to O \times \Sigma \to O \times E$
 Homomorphism: replace symbols by strings 	From every state, can have
Inverse homomorphism: replace string by symbol	ε -input moves or consume input, not both ε -stack moves or use stack, not both
Not closed under:	Formally, for every $q \in Q, a \in \Sigma, x \in \Gamma$, exactly one of
 ► Intersection (nomework) ► Difference (would imply intersection): A ∩ B = A \ (A \ B) 	$\delta(q,a,x), \delta(q,a,\varepsilon), \delta(q,\varepsilon,x) \text{ and } \delta(q,\varepsilon,\varepsilon) \text{ is not } \emptyset.$
Complement (with union, would imply intersection): $A \cap B = \overline{\overline{A} \cup \overline{B}}$	Accept if state accepting after end of input Reject if not, or fails to read entire input (incl. block on pop from empty stack, or infinite ε -loop)

Some DCFLs are not CFLs

 $\mathsf{DCFLs} = \mathsf{languages}$ recognized by DPDAs. Examples: $\{0^n 1^n | n \ge 0\}$ is DCFL.

 $\{a^ib^jc^k|i=j \text{ or } i=k\}$ and $\{ww^r|w\in\{0,1\}^*\}$ are not DCFL.

Theorem: The class of DCFLs is closed under complementation. Not quite as simple as swapping accept and non-accept states.

Corollary: A language whose complement isn't a CFL is not DCFL. Example: $\{a^i b^j c^k | i \neq j \text{ or } j \neq k\}$ is not DCFL. If it were, then $\bar{A} \cap a^* b^* c^* = \{a^n b^n c^n\}$ would be context free.