Graphs are everywhere

- Transportation networks: hubs, links, routes
- Communication networks: routing, how many hops, latency/throughput?
- Information networks: WWW, what are important/authoritative pages?
- Social networks: study interaction dynamics, find influencers?

How do we build algorithms to answer these questions?
Political blogosphere graph

Node = political blog; edge = link.

More applications

- Network science
 - random graphs: various evolution models
 - scale-free, small world
- Analyzing graph evolution in time
 - fake news
 - botnets
- Analyzing programs
 - control flow graph, function call graph
 - state space search (also in games): compute reachable states (configurations)
 - is an error state reachable?

Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) \(V \)
- Set of pairs of nodes (edges) \(E \) (a relation)

Graph \(G = (V, E) \)

Definitions: edge, path

- **Edge** \(e = \{u, v\} \) (for an undirected graph)
- but usually written \(e = (u, v) \)

\(u \) and \(v \) are neighbors, endpoints of \(e \)

A **path** is a sequence \(P = v_1, v_2, \ldots, v_{k-1}, v_k \) such that each consecutive pair \(v_i, v_{i+1} \) is joined by an edge in \(G \)

Called: path “from \(v_1 \) to \(v_k \)”. Or: a \(v_1 \rightleftharpoons v_k \) path

Clicker Question 1

Q: Which is not a path?

1. UCSB - SRI - UTAH
2. LINC - MIT - LINC - CASE
3. UCSB - SRI - STAN - UCLA - UCSB
4. None of the above

Simple path, distance, cycle

- **Simple path**: path where all vertices are distinct
 - Exercise. Prove: If there is a path from \(u \) to \(v \) then there is a simple path from \(u \) to \(v \).
- **Distance** from \(u \) to \(v \):
 - minimum number of edges in a \(u \rightleftharpoons v \) path
- **Cycle**: path \(v_1, \ldots, v_{k-1}, v_k \) where \(v_1 = v_k \) (\(k > 1 \))
 - **Simple cycle**: no repeated nodes (except first = last)
Trees

Tree = a connected graph with no cycles

- Q: Is this equivalent to trees you saw in Data Structures?
- A: More or less.
- Rooted tree: tree with parent-child relationship
 - Pick root \(r \) and "orient" all edges away from root
 - Parent of \(v \) = predecessor on path from \(r \) to \(v \)

Directed Graphs

- Directed graph \(G = (V, E) \)
 - Directed edge \(e = (u, v) \) is now an ordered pair
 - \(e \) leaves \(u \) (source) and enters \(v \) (sink)
- Directed path, cycle: same as before, but with directed edges
- Strongly connected: directed graph with directed path between every pair of vertices
- Note: graphs undirected if not otherwise specified

Graph Traversal

Thought experiment. World social graph.
- Is it connected?
- If not, how big is the largest connected component?
- Is there a path between you and <some famous person>?

"Six degrees of separation" (everyone connected in at most 6 links?)
Erdős number: coauthorship of scientific papers
How can you tell algorithmically?
Answer: graph traversal! (BFS/DFS)
Breadth-First Search: Layers

Explore outward from starting node \(s \).

Define layer \(L_i \) = all nodes at distance exactly \(i \) from \(s \).

Layers

- \(L_0 = \{ s \} \)
- \(L_1 \) = nodes with edge to \(L_0 \)
- \(L_2 \) = nodes with an edge to \(L_1 \) that don’t belong to \(L_0 \) or \(L_1 \)
- \(\ldots \)
- \(L_{i+1} \) = nodes with an edge to \(L_i \) that don’t belong to any earlier layer.

Observation:
There is a path from \(s \) to \(t \) if and only if \(t \) appears in some layer.

BFS Tree

Exercise: draw the BFS layers for a BFS starting from MIT

![BFS Tree Diagram](image)

We can use BFS to make a tree.

BFS and non-tree edges

Claim: let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \),
and let \((x, y)\) be any edge of \(G \).
Then the layers of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof

- Let \((x, y)\) be an edge
- Suppose \(x \in L_i, y \in L_j \), and \(j > i + 1 \)
- When BFS visits \(x \), either \(y \) is already discovered or not.
 - If \(y \) is already discovered, then \(j \leq i + 1 \). Contradiction.
 - Otherwise since \((x, y) \in E\), \(y \) is added to \(L_{i+1} \). Contradiction.

A More General Exploration Strategy

To explore the connected component containing \(s \):

![Connected Component](image)

Add any node \(v \) for which

- \((u, v)\) is an edge
- \(u \) is explored, but \(v \) is not
Depth-First Search

Depth-first search (DFS): keep exploring from the most recently added node until you have to backtrack.

Example.

Recursive DFS

DFS(u)
Mark u as "explored"
for each edge (u, v) incident to u do
if v is not marked "explored" then
 Recursively invoke DFS(v)
end if
end for

Exercise: do an example

DFS Tree

Can also extract tree T from DFS.

- \((u, v) \in T\) if \(v\) explored from \(u\)—i.e., DFS(u) calls DFS(v)

Claim: let T be a depth-first search tree for graph \(G = (V, E)\), and let \((x, y)\) be an edge that is in \(G\) but not \(T\) (a "non-tree edge"). Then either \(x\) is an ancestor of \(y\) or \(y\) is an ancestor of \(x\) in \(T\).

Proof?

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

```
while there is some unexplored node \(s\) do
    BFS(s) \(\triangleright\) Run BFS starting from \(s\).
    Extract connected component containing \(s\)
end while
```

Usually OK to assume graph is connected.
State if you are doing so and why it does not trivialize the problem.

Running time? What’s the running time of BFS?

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph \(G = (V, E)\), and let \((x, y)\) be an edge that is in \(G\) but not \(T\) (a "non-tree edge"). Then either \(x\) is an ancestor of \(y\) or \(y\) is an ancestor of \(x\) in \(T\).

Proof

- Suppose not and suppose that \(x\) is reached first by DFS.
- Before leaving \(x\), we must examine \((x, y)\).
- Since \((x, y) \not\in T\), \(y\) must have been explored by this time.
- But \(y\) was not explored when we arrived at \(x\) by assumption.
- Thus \(y\) was explored during the execution of DFS(x).
- Implies \(x\) is ancestor of \(y\).

Implementation

- How do we implement graph traversal?
 What is the running time?

- Preliminaries
 - Let \(m = |E|\) be the number of edges
 - Let \(n = |V|\) be the number of nodes
 - Data structure to represent graph? …
Graph representation: adjacency matrix

n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge

Space proportional to n^2

Clicker Question 3

An adjacency matrix representation for graph (V, E) with $|V| = n$
takes time

A) $\Theta(n)$ to check if (u, v) is an edge, $\Theta(|E|)$ to traverse all edges

B) $\Theta(n)$ to check if (u, v) is an edge, $\Theta(n^2)$ to traverse all edges

C) $\Theta(1)$ to check if (u, v) is an edge, $\Theta(|E|)$ to traverse all edges

D) $\Theta(1)$ to check if (u, v) is an edge, $\Theta(|E|)$ to traverse all edges

Graph representation: adjacency lists

Adjacency lists. Each node keeps list of neighbors

- Each edge stored twice
- Space? $\Theta(m + n)$
- Checking if (u, v) is an edge?
 $O(\text{degree}(u))$ time (degree = number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and discovered nodes

- Exploring = have seen this node and explored its outgoing edges

- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

Put s in A

while A is not empty do

 Take a node v from A

 if v is not marked “explored” then

 Mark v as “explored”

 for each edge (v, w) incident to v do

 if w is discovered then

 Put w in A

 end if

 end for

 end if

end while

Note: one part of this algorithm seems wasteful. Why?
Can put multiple copies of a single node in A.

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)