NP-Complete Problems So Far

Theorem: INDEPENDENT-SET, VERTEX-COVER, SET-COVER, SAT, 3-SAT, HAM-CYCLE, HAM-PATH, TSP are all NP-Complete.

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

Numerical problems

Subset Sum decision problem: given \(n \) items with weights \(w_1, \ldots, w_n \), is there a subset of items whose weight is exactly \(W \)?

Dynamic programming: \(O(nW) \) pseudo-polynomial time algorithm
(not polynomial in input length \(n \log W \))

Subset Sum (cont.)

- Set \(n + j \)th digit of \(W = 3 \)
- Consider a subset of items corresponding to a truth assignment (exactly one of \(t_i, f_i \))
 - If \(C_j \) is not satisfied, then total in position \(n + j \) is 0, otherwise it is 1, 2, or 3
 - Create two “dummy” items \(y_j, z_j \) with 1 in position \(n + j \)
 - Can select dummies to yield total of 3 in position \(n + j \) iff \(C_j \) is satisfied
Subset Sum Example

Example.

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(z_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(z_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(y_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(z_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(W\) | 1 | 1 | 1 | 3 | 3 | 3

Warning

Theorem. **SubsetSum** is NP-Complete.

But Subset Sum can be tricky!

- If reducing **SubsetSum** \(\leq_p X\), reduction needs to be polynomial in \(\log(W)\) (number of digits).

Reduction

- Reduce from 3-SAT.

Skeleton: 1 color for True, 1 for False

3 extra nodes in a clique \(T, F, B\).

For each variable \(x_i\), two nodes \(v_{0i}, v_{1i}\).

Edges \((v_{0i}, B), (v_{1i}, B), (v_{0i}, v_{1i})\).

Either \(v_{0i}\) or \(v_{1i}\) gets the \(T\) color.

Graph Coloring

Def. A \(k\)-coloring of a graph \(G = (V, E)\) is a function \(f : V \rightarrow \{1, \ldots, k\}\) such that for all \((u, v) \in E\), \(f(u) \neq f(v)\).

Problem. Given \(G = (V, E)\) and number \(k\), does \(G\) have a \(k\)-coloring?

Many applications

- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-coloring \(\in P\) (equivalent to bipartite testing)

Theorem. 3-coloring is NP-Complete.
Proof

- Graph is polynomial in $n + m$.
- If satisfying assignment
 - Color B, T, F then v_{11} as T if $\phi(x_i) = 1$.
 - Since clauses satisfied, can color each gadget.
- If graph 3-colorable
 - One of v_{10}, v_{11} must get T color.
 - Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?

Clicker Question 2

Which of the following is true?

A: If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete
B: k-coloring is NP-complete since any 3-coloring is also a k-coloring for $k \geq 3$
C: k-coloring is not NP-complete since 3-coloring is the hardest case, for $k > 3$ the coloring is easier
D: k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:

... any many others. See book or other sources for more examples.
You can use any known NP-complete problem to prove a new problem is NP-complete.