NP-Complete

- NP-complete = a problem $Y \in \text{NP}$ with the property that $X \leq^P Y$ for every problem $X \in \text{NP}$!

To prove a new problem Q is NP-complete
- Check $Q \in \text{NP}$.
- Choose an NP-complete problem Y (any $X \in \text{NP}$ reduces to it)
- Prove $Y \leq^P Q$ (then any $X \leq^P Y \leq^P Q$)

Need one NP-complete problem to bootstrap this.

From CIRCUIT-SAT to 3-SAT

Fact: If Y is NP-complete, X is in NP, and $Y \leq^P X$, then X is NP-complete.

Theorem: 3-SAT is NP-Complete.

1. In NP? Yes, check satisfying assignment in poly-time.
2. Prove by reduction from CIRCUIT-SAT.

Example.

```
  12   1
  \_\_\_\_\_\_\_
  11   1
     \_\_\_\_\_\_
     9
```

Review

- P – class of problems with polytime **algorithm**.
- NP – class of problems with polytime **certifier**.

Circuit-SAT

Cook-Levin Theorem CIRCUIT-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit (polynomial-time algorithm \implies polynomial-size circuit)

- If $X \in \text{NP}$, then X has a poly-time certifier $C(s, t)$
- Construct a circuit where s is hard-coded, and circuit is satisfiable iff $3t$ that causes $C(s, t)$ to output YES
- s is YES instance $\iff \exists t$ such that $C(s, t)$ outputs YES
- s is YES instance \iff circuit is satisfiable
- Algorithm for CIRCUIT-SAT implies an algorithm for X

Reduction: CIRCUIT-SAT \leq^P 3-SAT

- One variable x_v per circuit node v plus clauses to enforce circuit computations
- Equality = equivalence (conjunction of two implications)
- Write implication $A \implies B$ as clause $\neg A \lor B$
- Negation node: $x_{\text{out}} = \neg x_{\text{in}}$
- $x_{\text{in}} \implies \neg x_{\text{out}}$
- $\neg x_{\text{in}} \implies x_{\text{out}}$
- OR node: $x_{\text{out}} = x_1 \lor x_2$
- $x_1 \implies x_{\text{out}}$
- $x_2 \implies x_{\text{out}}$
- $x_{\text{out}} \implies x_1 \lor x_2$
- AND node: $x_{\text{out}} = x_1 \land x_2$
- $x_{\text{out}} \implies x_1$
- $x_{\text{out}} \implies x_2$
- $\neg x_{\text{out}} \implies \neg x_1 \lor \neg x_2$
Reduction: Circuit-Sat \leq_p 3-Sat

- Clause $C = x_v$ for input bits v fixed to one
- Clause $C = \neg x_v$ for input bits v fixed to zero
- Clause $C = x_o$ for output bit
- This formula is satisfiable iff circuit is satisfiable.
- Deal with clauses of size 1 and 2 by introducing two new variables and clauses that force them to be equal to zero.

Clicker Question

Which of the following statements is NOT true?

A: SAT \leq_p 3-SAT
B: 3-SAT \leq_p SAT
C: k-SAT \leq_p SAT for all $k \geq 2$
D: k-SAT is NP-complete for all $k \geq 2$

NP-Complete Problems So Far

Theorem: IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all NP-Complete.

NP-Complete Problems: Preview

Traveling Salesman Problem

- TSP: Given n cities and distance function $d(i, j)$, is there a tour that visits all cities with total distance less than D?
 - Tour: ordering of cities i_1, i_2, \ldots, i_n with $i_1 = 1$
 - Distance is $\sum_{j=1}^{n-1} d(i_j, i_{j+1}) + d(i_n, 1)$
- Applications: traveling salesperson, moving robotic arms
- Let’s prove a simpler problem is NP-complete, and then use it to show TSP is NP-complete.

Hamiltonian Cycle Problem

- HAMCYCLE ~ Hamiltonian Cycle. Given directed graph $G = (V, E)$, is there a cycle that visits each vertex exactly once?
 - $v_1, v_3, v_2, v_5, v_4, v_6$ is a Hamiltonian Cycle
Theorem. \textsc{Ham-Cycle} is NP-Complete.

- It is in NP.
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT \(\leq_P \) \textsc{Ham-Cycle}.

Reduction has two main parts.

- Make a graph with \(2^n \) Hamiltonian cycles, one per assignment.
- Augment graph with clauses to invalidate assignments.

Reduction: Graph skeleton

- Correspondence between Hamiltonian cycles and truth assignments
 - \(x_i = 1 \): traverse \(P_i \) from \(L \rightarrow R \)
 - \(x_i = 0 \): traverse \(P_i \) from \(R \rightarrow L \)

- Node \(c_j \) for clause \(C_j \) must be visited in middle of some \(P_i \)
 - \(x_i \in C_j \) \(\implies \) can visit \(c_j \) during \(L \rightarrow R \) traversal of \(P_i \).
 - \(x_i = 1 \) satisfies \(C_j \)
 - \(\bar{x}_i \in C_j \) \(\implies \) can visit \(c_j \) during \(R \rightarrow L \) traversal of \(P_i \).
 - \(x_i = 0 \) satisfies \(C_j \)

- There is a Hamiltonian cycle
 \[\iff \] can visit all clause nodes
 \[\iff \] there is a truth assignment that satisfies all clauses

Reduction: High-Level

- Correspondence between Hamiltonian cycles and truth assignments
 - \(x_i = 1 \): traverse \(P_i \) from \(L \rightarrow R \)
 - \(x_i = 0 \): traverse \(P_i \) from \(R \rightarrow L \)

Reduction: Details

- \(n \) rows (bidirected paths) \(P_1, \ldots, P_n \) (one per variable)
- Row has \(3m + 3 \) vertices, connected to neighbors in forward/backward direction
- First and last vertex of row \(i \) connected to first and last of \(i + 1 \).
- Source \(s \) connected to first and last of row \(1 \).
- First and last of row \(n \) connected to \(t \).
- Edge \((t, s)\)

Reduction: Clause Gadgets

- For each clause \(C_i \) construct gadget to restrict possible truth assignments
 - New node \(c_i \)
 - If \(x_i \in C_i \)
 - Add edges \((v_{i,2i}, c_i)\) and \((c_i, v_{i,2i+1})\)
 - \(c_i \) can be visited during \(L \rightarrow R \) traversal of \(P_i \)
 - If \(\neg x_i \in C_i \)
 - Add edges \((v_{i,2i+1}, c_i)\) and \((c_i, v_{i,2i})\)
 - \(c_i \) can be visited during \(R \rightarrow L \) traversal of \(P_i \)

[HAM-CYCLE]

Hamiltonian cycles correspond to the 2n possible truth assignments, and they correspond to the n independent choices of how to traverse each \(P_i \).

\[
C_1 = x_1 \lor \bar{x}_2 \lor x_3
\]
Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle
- If \(x_i = 1 \) traverse \(P_i \) from \(L \rightarrow R \), else \(R \rightarrow L \).
- Each \(C_ℓ \) is satisfied, so one path \(P_i \) is traversed in the correct direction to “splice” \(c_ℓ \) into our cycle.
- The result is a Hamiltonian Cycle.

Given Hamiltonian cycle, construct satisfying assignment:
- If cycle visits \(c_j \) from row \(i \), it will also leave to row \(i \) because of “buffer” nodes.
- Therefore, ignoring clause nodes, cycle traverses each row completely from \(L \rightarrow R \) or \(R \rightarrow L \).
- Set \(x_i = 1 \) if \(P_i \) traversed \(L \rightarrow R \), else \(x_i = 0 \).
- Every node \(c_j \) visited \(⇒ \) every clause \(C_j \) is satisfied.

Traveling Salesman

TSP. Given \(n \) cities and distance function \(d(i, j) \), is there a tour that visits all cities with total distance less than \(D \)?

Theorem. TSP is NP-Complete
- Clearly in NP.
- Reduction? From Ham-Cycle

Clicker Question

We want to show that \(\text{Ham-Cycle} \leq_P \text{TSP} \). How can we do so?
Given a \(\text{Ham-Cycle} \) instance \(G = (V, E) \) make TSP instance with one city per vertex and ...
- A. \(d(v_i, v_j) = 1 \) if \((v_i, v_j) \in E \), else 2. Tour distance: \(\leq n \)?
- B. \(d(v_i, v_j) = 2 \) if \((v_i, v_j) \in E \), else 1. Tour distance: \(\leq n \)?
- C. \(d(v_i, v_j) = 1 \) if \((v_i, v_j) \in E \), else 2. Tour distance: \(\leq m \)?

NP-Complete Problems

Ham-Path

Similar to Hamiltonian Cycle, visit every vertex exactly once.

Theorem. Ham-Path is NP-Complete.
- Two proofs.
 - Modify 3-SAT to Ham-Cycle reduction.
 - Reduce from Ham-Cycle directly.

Reduction from Ham-Cycle to TSP

Given HamCycle instance \(G = (V, E) \) make TSP instance
- One city per vertex
- \(d(v_i, v_j) = 1 \) if \((v_i, v_j) \in E \), else 2

Claim: there is a tour of distance \(\leq n \) if and only if \(G \) has a Hamiltonian cycle
- A Hamiltonian cycle clearly gives a tour of length \(n \)
- A tour of length \(n \) must travel \(n \) hops of length 1, which corresponds to a Hamiltonian cycle