Review: Polynomial-Time Reduction

- \(Y \leq_P X \):
 - Problem \(Y \) is polynomial-time reducible to Problem \(X \),
 - \(\text{solveY}(y) \)
 - Construct \(x \) // poly-time
 - \(\text{foo} = \text{solveX}(x) \) // poly # of calls
 - Return yes/no based on \(\text{foo} \) // poly-time

- ...if any instance of Problem \(Y \) can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem \(X \)

Statement about relative hardness

1. If \(Y \leq_P X \) and \(X \in \mathcal{P} \), then \(Y \in \mathcal{P} \)
2. If \(Y \leq_P X \) and \(Y \not\in \mathcal{P} \) then \(X \not\in \mathcal{P} \)

Reduction to General Case: Set Cover

Problem. Given a set \(U \) of \(n \) elements, subsets \(S_1, \ldots, S_m \subset U \), and a number \(k \), does there exist a collection of at most \(k \) subsets \(S_i \) whose union is \(U \)?

Example: \(U = \{A, B, C, D, E\} \) is the set of all skills, there are five people with skill sets:

- \(S_1 = \{A, C\} \)
- \(S_2 = \{B, E\} \)
- \(S_3 = \{A, C, E\} \)
- \(S_4 = \{D\} \)
- \(S_5 = \{B, C, E\} \)

Find a small team that has all skills. \(S_1, S_4, S_5 \)

Theorem. \(\text{VertexCover} \leq_P \text{SetCover} \)

Clicker Question

Vertex Cover is a special case of Set Cover with:

A. \(U = V \) and \(S_e = \) the two endpoints of \(e \) for each \(e \in E \).
B. \(U = E \) and \(S_v = \) the set of edges incident to \(v \) for each \(v \in V \).
C. \(U = V \cup E \) and \(S_v = \) the set of neighbors of \(v \) together with edges incident to \(v \) for each \(v \in V \).

Reduction of Vertex Cover to Set Cover

Reduction.
- Given Vertex Cover instance \((G,k) \)
- Construct Set Cover instance \((U,S_1,\ldots,S_m,k) \) with
 - \(U = E \), and \(S_v = \) the set of edges incident to \(v \)
- Return \text{Yes} iff \(\text{solveSC}((U,S_1,\ldots,S_m,k)) = \text{Yes} \)

Proof
- Straightforward to see that \(S_{v_1},\ldots,S_{v_\ell} \) is a set cover of size \(\ell \)
 if and only if \(v_1,\ldots,v_\ell \) is a vertex cover of size \(\ell \)
- This implies the algorithm correctly outputs:
 - \text{Yes} if \(G \) has a vertex cover of size \(\leq k \) and \text{No} otherwise
 - Polynomial # of steps outside of \(\text{solveSC} \)
 - Only one call to \(\text{solveSC} \)

Reduction Strategies

- Reduction by equivalence (Vertex Cover and Independent Set)
- Reduction to a more general case (Vertex Cover to Set Cover)
- Reduction by "gadgets": Satisfiability
Clicker Question: Variations of SAT

SAT – Given boolean formula \(C_1 \land C_2 \land \ldots \land C_m \) over variables \(x_1, \ldots, x_n \), does there exist a satisfying assignment?

3-SAT – Same, but each \(C_i \) has exactly three terms

2-SAT — each \(C_i \) has exactly two terms

What is the strongest statement below that follows trivially from the definitions above?

A. 2-SAT \(\leq_P \) 3-SAT \(\leq_P \) SAT
B. 2-SAT \(\leq_P \) SAT and 3-SAT \(\leq_P \) SAT
C. SAT \(\leq_P \) 3-SAT \(\leq_P \) SAT

Reduction

<table>
<thead>
<tr>
<th>Variables</th>
<th>(x_1, \ldots, x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>(x_i) or (\overline{x_i}) variable or its negation</td>
</tr>
<tr>
<td>Clause</td>
<td>(C = \overline{x_1} \land x_2 \land \overline{x_3}) “or” of terms</td>
</tr>
<tr>
<td>Formula</td>
<td>(C_1 \land C_2 \land \ldots \land C_m) “and” of clauses</td>
</tr>
<tr>
<td>Assignment</td>
<td>((x_1, x_2, x_3) = (1, 0, 1)) variable</td>
</tr>
<tr>
<td>Satisfying assignment</td>
<td>((x_1, x_2, x_3) = (1, 1, 0)) all clauses are “true”</td>
</tr>
</tbody>
</table>

Solving Satisfiability

SAT – Given boolean formula \(C_1 \land C_2 \land \ldots \land C_m \) over variables \(x_1, \ldots, x_n \), does there exist a satisfying assignment?

\[
(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})
\]

Reduction

Claim: 3-SAT \(\leq_P \) IndependentSet.

Reduction:

Given 3-SAT instance \(\Phi = \langle C_1, \ldots, C_m \rangle \), we will construct an independent set instance \(\langle G, m \rangle \) such that \(G \) has an independent set of size \(m \) iff \(\Phi \) is satisfiable

\(x_1 \) is unit clause: \(x_1 \land (\ldots \land (\ldots, x_i \land \ldots)) \)
\(\overline{x_1} \) is unit clause: \(x_i \land \ldots \) must be true

Propagation: if \(x_i \) is true, all clauses with \(x_i \) are true and \(\overline{x_i} \) can be removed from all clauses

But, if no more simplifications, must still try both cases for \(x_i \)

Seth: Strong Exponential Time Hypothesis (more than \(P \neq NP \)): SAT cannot be solved in subexponential time in the worst case.

Reduction by Gadgets: Satisfiability

Claim: 3-SAT \(\leq_P \) IndependentSet.

Reduction:

Given 3-SAT instance \(\Phi = \langle C_1, \ldots, C_m \rangle \), we will construct an independent set instance \(\langle G, m \rangle \) such that \(G \) has an independent set of size \(m \) iff \(\Phi \) is satisfiable

\(x_1 \) is unit clause: \(x_1 \land (\ldots \land (\ldots, x_i \land \ldots)) \)
\(\overline{x_1} \) is unit clause: \(x_i \land \ldots \) must be true

Propagation: if \(x_i \) is true, all clauses with \(x_i \) are true and \(\overline{x_i} \) can be removed from all clauses

Seth: Strong Exponential Time Hypothesis (more than \(P \neq NP \)): SAT cannot be solved in subexponential time in the worst case.
Correctness

(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3)

Claim: if \{C_1, \ldots, C_m\} is satisfiable, then G has an independent set of size m

- Consider any satisfying assignment of \{C_1, \ldots, C_m\}
- Let S consist of one node per triangle corresponding to true literal in that clause. Then |S| = m.
- For \(u, v\) within clause, at most one endpoint is selected
- For edge \((x_i, \bar{x}_j)\) between clauses, at most one endpoint is selected, because \(x_i = 1\) or \(\bar{x}_j = 1\), but not both
- Therefore S is an independent set

Reducions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

3-SAT
Indep-Set
SAT
Vertex-Cover
Set-Cover

▶ Y \rightarrow X means Y \leq_P X.

Toward a Definition of NP

Remember our problem hierarchy:

EXP
NP
P

Let’s formally define NP.

Remember: exponential time means \(O(2^n)\) for some constant \(d\).

Problem classes

- \(P\): Decision problems for which there is a polynomial time algorithm.
- \(NP\): Decision problems for which there is a polynomial time certifier.
 - A solution can be “certified” in polynomial time.
 - \(NP = “non-deterministic polynomial time”\)

Solver vs. Certifier

Let \(X\) be a decision problem and \(s\) be problem instance (e.g., \(s = (G, k)\) for INDEPENDENT SET)

Poly-time solver. Algorithm \(A(s)\) such that \(A(s) = YES\) iff correct answer is YES, and running time polynomial in |s|

Poly-time certifier. Algorithm \(C(s, t)\) such that for every instance \(s\), there is some \(t\) such that \(C(s, t) = YES\) iff correct answer is YES, and running time is polynomial in |s|

- \(t\) is the “certificate” or hint. Must also be polynomial-size in |s|

Certifier Example: Independent Set

Input \(s = (G, k)\).
Problem: Does \(G\) have an independent set of size at least \(k\)?

Idea: Certificate \(t\) = an independent set of size \(k\)

- \textbf{INDEPENDENT SET} \(\in P\)
 - Unknown. No known polynomial time algorithm.
- \textbf{INDEPENDENT SET} \(\in NP\)
 - Yes. Easy to certify solution in polynomial time.

CertifyIS(\((G, k), t\))
if \(|t| < k\) return No
for each edge \(e = (u, v) \in E\) do
 if \(u \in t\) and \(v \in t\) return No
end for
Return YES

Polynomial time? Yes, linear in |E|.
Example: 3-SAT

Input: formula Φ on n variables.

Problem: Is Φ satisfiable?

Idea: Certificate $t =$ the satisfying assignment

$\text{Certify3SAT}(\langle \Phi \rangle, t)$

\triangleright Check if t makes Φ true

P, NP, EXP

\triangleright 3SAT and INDEPENDENT SET are in NP, as are many other problems that are hard to solve, but easy to certify!

\triangleright Claim: $P \subseteq NP$

\triangleright Claim: $NP \subseteq EXP$

Both straightforward to prove, but not critical right now.

NP-Complete

NP-complete $=$ a problem $Y \in NP$ with the property that $X \leq_P Y$ for every problem $X \in NP$!

CIRCUIT-SAT

Problem: Given a circuit built of AND, OR, and NOT gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Cook-Levin Theorem

CIRCUIT-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

\triangleright If $X \in NP$, then X has a poly-time certifier $C(s, t)$

\triangleright Construct a circuit where s is hard-coded, and circuit is satisfiable iff $\exists t$ that causes $C(s, t)$ to output YES

\triangleright s is Yes instance $\iff \exists t$ such that $C(s, t)$ outputs YES

\triangleright s is Yes instance \iff circuit is satisfiable

\triangleright Algorithm for CIRCUIT-SAT implies an algorithm for X
A Circuit-SAT reduction
- Vertex Cover – Does G have VC of size at most k?

Clicker Question

It’s easy to give a reduction from 3-SAT to Circuit-SAT, i.e., to show that 3-SAT \leq_p Circuit-SAT.
What can we conclude from this?

A. 3-SAT is NP-complete.
B. 3-SAT is in NP.
C. If Circuit-SAT is NP-complete, then 3-SAT is also NP-complete.

Back to 3-SAT

Claim: If Y is NP-complete, X is in NP, and $Y \leq_p X$, then X is NP-complete.

Theorem: 3-SAT is NP-Complete.
- In NP? Yes, check satisfying assignment in poly-time.
- Prove by reduction from Circuit-SAT.

Example.

Reduction: Circuit-Sat \leq_p 3-Sat
- One variable x_v per circuit node v plus clauses to enforce circuit computations
- Equality = equivalence (conjunction of two implications)
- Write implication $A \Rightarrow B$ as clause $\neg A \lor B$
- Negation node: $x_v = \neg x_u$
 - $x_u \Rightarrow \neg x_v$
 - $\neg x_u \Rightarrow x_v$

- AND node: $x_v = x_u \land x_w$
 - $x_u \Rightarrow x_v$
 - $x_w \Rightarrow x_v$
 - $x_v \Rightarrow x_u \lor x_w$

- OR node: $x_v = x_u \lor x_w$
 - $x_u \Rightarrow x_v$
 - $x_w \Rightarrow x_v$
 - $x_v \Rightarrow x_u \land x_w$

Proving New Problems NP-Complete

Fact: If Y is NP-complete, X is in NP, and $Y \leq_p X$, then X is NP-complete.

Want to prove problem X is NP-complete
- Check $X \in$ NP.
- Choose known NP-complete problem Y.
- Prove $Y \leq_p X$.

Reduction: Circuit-Sat \leq_p 3-Sat
- Clause $C = x_v$ for input bits v fixed to one
- Clause $C = \neg x_v$ for input bits v fixed to zero
- Clause $C = x_v$ for output bit
- This formula is satisfiable iff circuit is satisfiable.
- Deal with clauses of size 1 and 2 by introducing two new variables and clauses that force them to be equal to zero.