COMPSCI 311: Introduction to Algorithms
Lecture 20: Intractability: Polynomial-Time Reductions

Marius Minea
University of Massachusetts Amherst

slides credit: Dan Sheldon

8 April 2019

Review: Dynamic Programming
▶ Sequence Alignment: 2D OPT array \(\text{OPT}(i,j) \)
▶ Subset Sum: “add a variable”

\[
\text{OPT}(j, w) = \max \left\{ \text{OPT}(j-1, w), \text{OPT}(j-1, w-w_j) \right\}
\]
* Running time \(O(nW) \) — \(nW \) array entries, constant time per entry

▶ Shortest paths with negative edge weights (Bellman-Ford)

\[
\text{OPT}(i, v) = \min \left\{ \text{OPT}(i-1, v), \min_{w \in V} \{c_{v,w} + \text{OPT}(i-1, w)\} \right\}
\]

\(O(n^3) \) — \(n^2 \) array entries, constant time per entry

▶ Know how to design, analyze DP algorithms.
Compute shortest paths in graphs with negative edge weights.

Review: Divide-And-Conquer
▶ Solving recurrences, e.g., \(T(n) \leq 2T(n/2) + O(n) \)
▶ Recursion tree, unrolling
▶ “Guess and verify”: proof by induction
▶ Master theorem
Suppose \(T(n) = aT(n/b) + O(n^d) \). Then:

\[
T(n) =
\begin{cases}
O(n^d) & \text{if } d \geq \log_b a \\
O(n^d \log n) & \text{if } d = \log_b a \\
O(n^d \log \log n) & \text{if } d < \log_b a
\end{cases}
\]

Does not cover everything: gaps between 1 and 2, and 2 and 3
Guess and prove by induction for other cases
▶ Designing algorithms
▶ Often: divide input into equal sized chunks, solve each recursively, combine to solve original problem
▶ Can be more subtle—e.g., integer multiplication
▶ To prove: inductively assume recursive call works.

Review: Dynamic Programming
▶ Another design technique based on recursion
▶ Identify recursive structure of problem by writing recurrence for optimal value (optimal substructure property)
▶ Memoization or convert recurrence to iterative algorithm
▶ Weighted interval scheduling
▶ Binary choice: \(j \in O, j \notin O \)
▶ \(\text{OPT}(j) = \max \{ \text{OPT}(j-1), w_j + \text{OPT}(p(j)) \} \)
▶ Running time \(O(n) \) — \(n \) array entries, constant time per entry
▶ Rod cutting
▶ Multi-way choice: position \(i \in \{1, \ldots, n\} \) of first cut
▶ \(\text{OPT}(j) = \max_{1 \leq i \leq n} \{ p_i + \text{OPT}(j-i) \} \)
▶ Running time \(O(n^2) \) — \(n \) array entries, \(O(n) \) per entry

Review: Network Flow
▶ Problem formulation and definitions
▶ Flow network: directed graph, capacities, sources \(s \), sink \(t \)
▶ Flow: assign flow \(f(e) \) on each edge; capacity and flow conservation constraints
▶ Ford-Fulkerson
▶ Initialize flow \(f \) to all zeros
▶ Residual graph \(G_f \)
▶ Repeatedly find \(s \rightarrow t \) path \(P \) in \(G_f \), use to augment \(f \), update \(G_f \)
▶ Stop when no \(s \rightarrow t \) paths remain in \(G_f \)
▶ Analysis
▶ Always maintain a flow: use facts of residual graph and augment operation, verify that definition of flow still holds
▶ Termination and running time: flow increases by one in each iteration, and cannot exceed total capacity leaving \(s \)
▶ Correctness: Max-Flow Min-Cut Theorem

Midterm Review: Dijkstra, MST
▶ Dijkstra (shortest paths): add node \(v \) with smallest value of \(d(u) + \ell(u, v) \) for some node \(u \) in \(S \), where \(d(u) \) is distance from \(s \) to \(u \). Repeat. \(O(m \log n) \) w/ priority queue
▶ MST
▶ Definitions: spanning tree, MST, cut
▶ Cut property: lightest edge across any cut belongs to every MST
▶ Prim’s algorithm: maintain a set \(S \) of explored nodes. Add cheapest edge from \(S \) to \(V \) — \(S \). Repeat.
▶ \(O(m \log n) \) with priority queue, like Dijkstra.
▶ Kruskal’s algorithm: consider edges in order of cost. Add edge if it does not create a cycle.
▶ \(O(m \log n) \) with union-find data structure
Review: Max-Flow Min-Cut

- **Max-Flow Min-Cut Theorem**
 - \(v(f) \leq c(A, B) \) for any flow \(f \) and any \(s-t \) cut \(c(A, B) \)
 - Upon termination, Ford-Fulkerson produces a flow \(f \) and cut \((A, B) \) such that \(v(f) = c(A, B) \), so \(f \) is a max-flow and \((A, B) \) is a min-cut
 - Forward edges saturated, backward edges have no flow.
 - The cut \((A, B) \) is found by letting \(A \) = set of nodes reachable from \(s \) in residual graph

Algorithm Design

- Formulate the problem precisely
- Design an algorithm
- Prove correctness
- Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Graph Searches / Network Design

- **Input**: undirected graph \(G = (V, E) \) with edge costs
- **Minimum spanning tree problem**: find min-cost subset of edges so there is a path between any \(u, v \in V \).
 - \(O(m \log n) \) greedy algorithm
- **Minimum Steiner tree problem**: find min-cost subset of edges so there is a path between any \(u, v \in W \) for specified set of nodes \(W \) (called terminals)
 - No polynomial-time algorithm is known.
 - but: for \(W = V \): spanning tree \(O(m \log n) \)
 - for \(W = \{u, v\} \): shortest path \(O(m \log n) \)

Example: Knapsack Problem

- **Input**: \(n \) items with costs and weights, capacity \(W \)
- **Goal**: select items to maximize total cost without exceeding \(W \)
- **Fractional knapsack**: select fraction in \([0, 1]\) of each item
 - \(O(n \log n) \) greedy algorithm
- **0-1 Knapsack**: select all or none of each item
 - \(O(nW) \) pseudo-polynomial time algorithm
 - No polynomial time algorithm known!
 - (Also none known for real weights)
- **Subset-Sum Problem** (Knapsack, no values)
 - maximum weight \(\leq W \): \(O(nW) \) pseudo-polynomial
 - No polynomial time algorithm known
 - same if we want weight sum equal to \(W \):

Tractability

- Working definition of efficient: polynomial time
 - \(O(n^d) \) for some \(d \).
- Huge class of natural and interesting problems for which
 - We don’t know any polynomial time algorithm
 - We can’t prove that none exists
- **Goal**: develop mathematical tools to say when a problem is hard or “intractable”

Preview of Landscape: Classes of Problems

- **P**: solvable in polynomial time
- **NP**: includes most problems we don’t know about
- **EXP**: solvable in exponential time
NP-Completeness

- **NP-complete**: problems that are "as hard as" every other problem in NP.
- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP.

P ≠ NP?

Two possibilities:

- We don’t know which is true, but think P ≠ NP
- $1M prize to find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

- **Polynomial-time reductions**: one problem is "as hard as" another (what does this mean?)
- **Define NP**: characterize this class of problems
- **NP-completeness**: some problems in NP are "as hard as" all others

Polynomial-Time Reduction

- Problem Y is polynomial-time reducible to Problem X

  ```
  solveY(yInput) 
  Construct xInput // poly-time
  foo = solveX(xInput) // poly # of calls
  return yes/no based on foo // poly-time
  ```

 ...if any instance of Problem Y can be solved using
 1. A polynomial number of standard computational steps
 2. A polynomial number of calls to a black box that solves problem X

- **Notation** Y ≤_P X

Clicker Question

Suppose that Y ≤_P X. Which of the following can we infer?

A. If Y can be solved in polynomial time, then so can X.
B. If X can be solved in polynomial time, then so can Y.
C. If Y cannot be solved in polynomial time, then neither can X.
D. If X cannot be solved in polynomial time, then neither can Y.

Polynomial-Time Reduction

- Y ≤_P X

  ```
  solveY(yInput) 
  Construct xInput // poly-time
  foo = solveX(xInput) // poly # of calls
  return yes/no based on foo // poly-time
  ```

 Statement about relative hardness
 1. If Y ≤_P X and X ∈ P, then Y ∈ P
 2. If Y ≤_P X and Y ∉ P then X ∉ P

- 1: design algorithms, 2: prove hardness
First Reduction: Independent Set and Vertex Cover

Given a graph $G = (V,E)$.

- $S \subset V$ is an independent set if no nodes in S share an edge. Examples: $\{3,4,5\}, \{1,4,5,6\}$.
- $S \subset V$ is a vertex cover if every edge has at least one endpoint in S. Examples: $\{1,2,6,7\}, \{2,3,7\}$

Indep-Set: Does G have independent set of size at least k?

Vertex-Cover: Does G have a vertex cover of size at most k?

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.

Independent Set and Vertex Cover

- **Claim**: S is independent set if and only if $V - S$ is vertex cover.
 1. S independent set $\Rightarrow V - S$ vertex cover
 - Consider any edge (u, v)
 - S independent \Rightarrow either $u \notin S$ or $v \notin S$
 - i.e., either $u \in V - S$ or $v \in V - S$
 - $\Rightarrow V - S$ is a vertex cover
 2. $V - S$ vertex cover $\Rightarrow S$ independent set
 - Similar.

Independent Set \leq_p Vertex Cover

- **Claim**: $\text{INDEPENDENT SET} \leq_p \text{VERTEX COVER}$. **Reduction**:
 - On INDEPENDENT SET instance (G,k)
 - Construct VERTEX COVER instance $(G,n-k)$
 - Return YES iff $\text{solveVC}((G,n-k)) = \text{YES}$

- **Correctness** for YES output:
 - Suppose G has independent set S with $\geq k$ nodes
 - Then $T = V - S$ is a vertex cover with $\leq n - k$ nodes
 - The algorithm correctly outputs YES

- **Correctness** for No output:
 - Suppose G has no independent set S with $\geq k$ nodes
 - Then there is no vertex cover with T with $\leq n - k$ nodes, otherwise $S = V - T$ is an independent set with $\geq k$ nodes.
 - The algorithm correctly outputs NO

Vertex Cover \leq_p Independent Set

- **Claim**: $\text{VERTEX COVER} \leq_p \text{INDEPENDENT SET}$

- **Reduction**:
 - On VERTEX COVER input (G,k)
 - Construct INDEPENDENT SET input $(G,n-k)$
 - Return YES if $\text{solveIS}((G,n-k)) = \text{YES}$

- **Proof**: similar
Decision versus Optimization

- For intractability and reductions we focus on decision problems (Yes/No answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa.
- If we can solve \text{MaxIndSet}(G) and result is \(S\) then \(\text{IndSet}(G, k)\) has solution iff \(k \leq |S|\)
- solve \text{MaxIndSet}(G) by solving \(\text{IndSet}(G, k), k = 1, \ldots, n\) or faster by doing binary search

Reduction Strategies

- Reduction by equivalence (Vertex Cover and Independent Set)
- Reduction to a more general case
- Reduction by “gadgets” (e.g., Satisfiability)

Reduction to General Case: Set Cover

Problem. Given a set \(U\) of \(n\) elements, subsets \(S_1, \ldots, S_m \subseteq U\), and a number \(k\), does there exist a collection of at most \(k\) subsets \(S_i\) whose union is \(U\)?

- Example: \(U = \{A, B, C, D, E\}\) is the set of all skills, there are five people with skill sets:
 - \(S_1 = \{A, C\}\), \(S_2 = \{B, E\}\), \(S_3 = \{A, C, E\}\)
 - \(S_4 = \{D\}\), \(S_5 = \{B, C, E\}\)
- Find a small team that has all skills. \(S_1, S_4, S_5\)

Theorem. \(\text{VertexCover} \leq_p \text{SetCover}\)

Clicker Question

Given the universe \(U = \{1, 2, 3, 4, 5, 6, 7\}\) and the following sets, which is the minimum size of a set cover?

- A. 2
- B. 3
- C. 4
- D. None of the above

Analysis

- “Yes” instance: \(G\) has a vertex cover of size \(\leq k\)
 - \(U\) has a set cover of size \(\leq k\)
 - Output is \(\text{YES}—\text{correct}\)
- “No” instance: \(G\) does not have a vertex cover of size \(\leq k\)
 - \(U\) does have a set cover of size \(\leq k\) for \(k \geq 1\)
 - Output is \(\text{YES}—\text{incorrect}\)

=>