Algorithm Design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm? How many “primitive steps” are executed for an input of size \(n \)?

```plaintext
sum = 0
for i = 1 to n do
    for j = 1 to n do
    end for
end for
```

The running time is \(T(n) = \ldots \).

What are the coefficients?

For large values of \(n \), \(T(n) \) is less than some multiple of \(n^2 \).
We say \(T(n) \) is \(O(n^2) \) and typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function \(T(n) \) is \(O(f(n)) \) (read: “is order \(f(n) \)”) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that

\[
T(n) \leq cf(n) \quad \text{for all} \quad n \geq n_0
\]

We say that \(f \) is an asymptotic upper bound for \(T \).

Example:

\[
T(n) = 2n^2 + n + 2
\leq 2n^2 + n^2 + 2n
\text{ if } n \geq 1
\]

So \(T(n) \) is \(O(n^2) \)

Big-O: Examples

- If \(T(n) = n^2 + 1000000n \) then \(T(n) \) is \(O(n^2) \)
 \(c = 2, n_0 = 100 \)
- If \(T(n) = n^3 + n \log n \) then \(T(n) \) is \(O(n^3) \)
 \(c = 2, n_0 = 1, \text{ since } \log n < n \)
- If \(T(n) = 2\sqrt{n} \log n \) then \(T(n) \) is \(O(n) \)
 \(c = 1, n_0 = 1, \text{ since } \sqrt{n} \log n \leq \log n \) and \(2\sqrt{n} \log n = n \)

Clicker Question 1

Claim \(n^3 + 10^6n \) is \(O(n^3) \)

To prove this we need to show that

\[
n^3 + 10^6n \leq cn^3 \quad \text{for all} \quad n \geq n_0
\]

Which values of \(c \) and \(n_0 \) make this inequality true?

A. \(c = 2, n_0 = 1000 \)
B. \(c = 101, n_0 = 100 \)
C. Both A and B
D. Neither A nor B
Big-O: Reviewing Definition

Big-O is a relation between two functions

\[f(n) = O(g(n)) \text{ means } \exists c > 0, n_0 \geq 0 : f(n) \leq cg(n) \text{ for } n \geq n_0. \]

There is no unique function \(g(n) \) so that \(f(n) = O(g(n)) \)

Trivially, \(f(n) = O(f(n)) \): take \(c = 1, n_0 = 0 \)

We also have \(f(n) = O(\frac{1}{2}f(n)) \): take \(c = 2, n_0 = 0 \)

We also have \(f(n) = O(nf(n)) \); take \(c = 1, n_0 = 1, \text{ etc.} \)

Whether \(f(n) = O(g(n)) \) does not depend on

- multiplying \(f \) or \(g \) by a constant (we can choose \(c \))
- the first 2 or 5 or 1000 etc. values (we can choose \(n_0 \))

Properties of Big-O: Additivity

Claims (Additivity):
- If \(f \) is \(O(h) \) and \(g \) is \(O(h) \), then \(f + g \) is \(O(h) \).

Example:
- \(3n^2 \)
 \(O(n^5) \)
 + \(n^4 \)
 \(O(n^5) \)
 is \(O(n^5) \)

Properties of Big-O: Transitivity

Claim (Transitivity): If \(f \) is \(O(g) \) and \(g \) is \(O(h) \), then \(f \) is \(O(h) \).

Example:
- \(2n^2 + n + 1 \)
 \(O(n^2) \)
 + \(n^2 \)
 \(O(n^3) \)
 \(O(n^3) \)
 \(g(n) \)
 \(h(n) \)

Therefore, \(2n^2 + n + 1 \) is \(O(n^3) \)

Properties of Big-O: Additivity

Claims (Additivity):
- If \(f \) is \(O(h) \) and \(g \) is \(O(h) \), then \(f + g \) is \(O(h) \).

\[
\frac{3n^2 + n^4}{O(n^3)} = O(n^2)
\]

- If \(f \) is \(O(g) \), then \(f + g \) is \(O(g) \)

\[
\frac{n^3 + 23n + n \log n}{g(n)} = O(n^3)
\]

Clicker Question 2

Let \(f(n) = 3n^2 + 4n \log_2 n + 5 \). Which of the following are true?

A. \(f(n) \) is \(O(n^2) \)
B. \(f(n) \) is \(O(n^2 \log_2 n) \)
C. Both A and B
D. Neither A nor B

Transitivity Proof

Claim (Transitivity): If \(f \) is \(O(g) \) and \(g \) is \(O(h) \), then \(f \) is \(O(h) \).

Proof: we know from the definition that

- \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
- \(g(n) \leq c' h(n) \) for all \(n \geq n'_0 \)

Therefore

\[
f(n) \leq cg(n) \quad \text{if } n \geq n_0
\]

\[
\leq c' c h(n) \quad \text{if } n \geq n_0 \quad \text{and } n \geq n'_0
\]

\[
= c' c' h(n) \quad \text{if } n \geq \max\{n_0, n'_0\}
\]

\[
f(n) \leq c'' h(n) \quad \text{if } n \geq n''_0
\]

Know how to do proofs using Big-O definition.
Using Additivity

- OK to drop lower order terms:
 \[2n^5 + 10n^3 + 4n \log n + 1000n \text{ is } O(n^5) \]

- Polynomials: Only highest-degree term matters. If \(a_d > 0 \) then:
 \[a_0 + a_1n + a_2n^2 + \ldots + a_dn^d \text{ is } O(n^d) \]

- You are using additivity when you ignore the running time of statements outside for loops!

Logarithm review

Definition: \(\log_b(a) \) is the unique number \(c \) such that \(b^c = a \)

Informally: the number of times you can divide \(a \) into \(b \) parts until each part has size one

Properties:

- Log of product \(\rightarrow \) sum of logs
 - \(\log(xy) = \log x + \log y \)
 - \(\log(x^3) = 3 \log x \)

- \(\log_b(\cdot) \) is inverse of \(b^\cdot \)
 - \(\log_b(b^n) = n \)
 - \(b^{\log_b n} = n \)

- \(\log_b n = \log_a b \cdot \log_b n \) (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base. Assume \(\log_2 \) if not specified.

Other Useful Facts: Log vs. Poly vs. Exp

Fact: \(\log_b(n) \) is \(O(n^d) \) for all \(b, d > 0 \)

All polynomials grow faster than logarithm of any base

Fact: \(n^d \) is \(O(r^n) \) when \(r > 1 \)

Exponential functions grow faster than polynomials

Big-O comparison

Which grows faster?
\[n(\log n)^3 \text{ vs. } n^{4/3} \]

divide by common factor \(n \), simplifies to:
\[(\log n)^3 \text{ vs. } n^{1/3} \]

take cubic root, simplifies to:
\[\log n \text{ vs. } n^{1/9} \]

- We know \(\log n \) is \(O(n^d) \) for all \(d \)
 - \(\Rightarrow \) \(\log n \) is \(O(n^{1/9}) \)
 - \(\Rightarrow n(\log n)^3 \) is \(O(n^{1/3}) \)

Apply transformations (monotone, invertible) to both functions. Try taking log.

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to other functions.

Not: “the running time of my algorithm”.

Correct Usage:

- Worst-case running time of algorithm in input of size \(n \) is \(T(n) \).
- \(T(n) \) is \(O(n^3) \).
- The running time of the algorithm is \(O(n^3) \).

Incorrect Usage:

- \(O(n^3) \) is the running time of the algorithm.
 (There are many different asymptotic upper bounds to the running time of the algorithm.)

Big-O: Motivation

Algorithm foo
for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 do something...
 end for
end for
Fact: run time is \(O(n^3) \)

Algorithm bar
for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 do something else...
 end for
end for
Fact: run time is \(O(n^3) \)

Conclusion: foo and bar have the same asymptotic running time. What is wrong?
More Big-Ω Motivation

Algorithm sum-product
\[
\text{sum} = 0 \\
\text{for } i = 1 \text{ to } n \text { do } \\
\hspace{1em} \text{for } j = i \text{ to } n \text { do } \\
\hspace{2em} \text{sum } += A[i]*A[j] \\
\hspace{1em} \text{end for} \\
\text{end for}
\]

What is the running time of sum-product?

Easy to see it is $O(n^2)$. Could it be better? $O(n)$?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that
\[
T(n) \geq cf(n) \text{ for all } n \geq n_0
\]

f is an asymptotic lower bound for T

Clicker Question 3

Which is an equivalent definition of big Omega notation?

A. $f(n)$ is $\Omega(g(n))$ if $g(n)$ is $O(f(n))$
B. $f(n)$ is $\Omega(g(n))$ if for any $n \geq 0$ there exists a constant $c > 0$ such that $f(n) \geq c \cdot g(n)$
C. Both A and B
D. Neither A nor B

Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$

Algorithm sum-product
\[
\text{sum} = 0 \\
\text{for } i = 1 \text{ to } n \text { do } \\
\hspace{1em} \text{for } j = i \text{ to } n \text { do } \\
\hspace{2em} \text{sum } += A[i]*A[j] \\
\hspace{1em} \text{end for} \\
\text{end for}
\]

Exercise: solution

Hard way

- Count exactly how many times the loop executes
\[
1 + 2 + \ldots + n = \frac{n(n + 1)}{2} = \Omega(n^2)
\]

Easy way

- Ignore all loop executions where $i > n/2$ or $j < n/2$
- The inner statement executes at least $(n/2)^2 = \Omega(n^2)$ times