Algorithm Design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm? How many “primitive steps” are executed for an input of size n?

```plaintext
sum = 0
for i = 1 to n do
  for j = 1 to n do
  end for
end for
```

The running time is $T(n) = ? \cdot n^2 + ? \cdot n + ?$.

What are the coefficients?

For large values of n, $T(n)$ is less than some multiple of n^2.

We say $T(n)$ is $O(n^2)$ and typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function $T(n)$ is $O(f(n))$ (read: “is order $f(n)$”) if there exist constants $c > 0$ and $n_0 \geq 0$ such that

$$T(n) \leq cf(n) \text{ for all } n \geq n_0$$

We say f is an asymptotic upper bound for T.

Example:

- $T(n) = 2n^2 + n + 2 \\ \leq 2n^2 + n^2 + 2n$ if $n \geq 1$ \\ $T(n) \leq \frac{5}{c}n^2$ if $n \geq \frac{1}{c n_0}$

So $T(n)$ is $O(n^2)$

Big-O: Examples

- If $T(n) = n^2 + 1000000n$ then $T(n)$ is $O(n^2)$
 $c = 2, n_0 = 10^6$
- If $T(n) = n^3 + n \log n$ then $T(n)$ is $O(n^3)$
 $c = 2, n_0 = 1, \text{ since } \log n < n$
- If $T(n) = 2\sqrt{\log n}$ then $T(n)$ is $O(n)$
 $c = 1, n_0 = 1, \text{ since } \sqrt{\log n} \leq \log n \text{ and } 2^{\log n} = n$

Clicker Question 1

Claim $n^3 + 10^6n$ is $O(n^3)$

To prove this we need to show that

$$n^3 + 10^6n \leq cn^3 \text{ for all } n \geq n_0$$

Which values of c and n_0 make this inequality true?

A. $c = 2, n_0 = 1000$
B. $c = 101, n_0 = 100$
C. Both A and B
D. Neither A nor B
Big-O: Reviewing Definition

Big-O is a relation between two functions

\[f(n) = O(g(n)) \text{ means } \exists c > 0, n_0 \geq 0 : f(n) \leq cg(n) \text{ for } n \geq n_0. \]

There is no unique function \(g(n) \) so that \(f(n) = O(g(n)) \)

Trivially, \(f(n) = O(f(n)) \): take \(c = 1, n_0 = 0 \)

We also have \(f(n) = O(\frac{1}{2}f(n)) \): take \(c = 2, n_0 = 0 \)

We also have \(f(n) = O(nf(n)) \); take \(c = 1, n_0 = 1 \), etc.

Whether \(f(n) = O(g(n)) \) does not depend on

- multiplying \(f \) or \(g \) by a constant (we can choose \(c \))
- the first 2 or 5 or 1000 etc. values (we can choose \(n_0 \))

How to Use Big-O

Analyze pseudocode to determine running time \(T(n) \) of algorithm as

- a function of \(n \):

\[T(n) = 2n^2 + n + 2 \]

Prove that \(T(n) \) is asymptotically upper-bounded by a simpler function using definition of big-O:

\[T(n) = 2n^2 + n + 2 \]

\[\leq 2n^2 + n^2 + 2n^2 \text{ if } n \geq 1 \]

\[\leq 5n^2 \text{ if } n \geq 1 \]

This is right, but too much work. We will:

- prove properties of big-O that simplify finding big-O bounds,
- use these properties to take "shortcuts" when analyzing algorithms

(you probably learned the shortcuts without formal justification).

Transitivity Proof

Claim (Transitivity): If \(f \) is \(O(g) \) and \(g \) is \(O(h) \), then \(f \) is \(O(h) \).

Proof: we know from the definition that

- \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
- \(g(n) \leq c' h(n) \) for all \(n \geq n'_0 \)

Therefore

\[
\begin{align*}
 f(n) &\leq cg(n) & \text{if } n \geq n_0 \\
 &\leq c(c'h(n)) & \text{if } n \geq n_0 \text{ and } n \geq n'_0 \\
 &= \frac{c'}{c}h(n) & \text{if } n \geq \max\{n_0, n'_0\} \\
 f(n) &\leq c'' h(n) & \text{if } n \geq n''_0
\end{align*}
\]

Know how to do proofs using Big-O definition.

Clicker Question 2

Let \(f(n) = 3n^2 + 4n \log_2 n + 5 \). Which of the following are true?

A. \(f(n) \) is \(O(n^2) \)
B. \(f(n) \) is \(O(n^2 \log_2 n) \)
C. Both A and B
D. Neither A nor B

Properties of Big-O: Transitivity

Claim (Transitivity): If \(f \) is \(O(g) \) and \(g \) is \(O(h) \), then \(f \) is \(O(h) \).

Example:

- \(2n^2 + n + 1 \leq O(n^2) \)

- \(n^2 \leq O(n^3) \)

- Therefore, \(2n^2 + n + 1 \) is \(O(n^3) \)

Properties of Big-O: Additivity

Claims (Additivity):

- If \(f(n) \) is \(O(h) \) and \(g(n) \) is \(O(h) \), then \(f + g \) is \(O(h) \).

\[
\begin{align*}
 \frac{3n^2 + n^4}{O(n^5)} &\leq O(n^3) \\
 \frac{n^3 + 23n + n \log n}{O(n)} &\leq O(n^3)
\end{align*}
\]

- If \(f \) is \(O(g) \), then \(f + g \) is \(O(g) \).
Using Additivity

- OK to drop lower order terms:
 \[2n^5 + 10n^3 + 4n \log n + 1000n \text{ is } O(n^5) \]
- Polynomials: Only highest-degree term matters. If \(a_d > 0 \) then:
 \[a_0 + a_1n + a_2n^2 + \ldots + a_d n^d \text{ is } O(n^d) \]
- You are using additivity when you ignore the running time of statements outside for loops!

Logarithm review

Definition: \(\log_b(a) \) is the unique number \(c \) such that \(b^c = a \)

Informally: the number of times you can divide \(a \) into \(b \) parts until each part has size one

Properties:
- Log of product \(\to \) sum of logs
 - \(\log(xy) = \log x + \log y \)
 - \(\log(x^k) = k \log x \)
- \(\log_b(b^n) = n \)
- \(n^{\log_b(n)} = n \)
- \(\log_b n = \log_b b \cdot \log_b n \) (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base. Assume \(\log_2 \) if not specified.

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to other functions.

Not: “the running time of my algorithm”.

Correct Usage:
- Worst-case running time of algorithm in input of size \(n \) is \(T(n) \).
- \(T(n) \) is \(O(n^3) \).
- The running time of the algorithm is \(O(n^3) \).

Incorrect Usage:
- \(O(n^3) \) is *the* running time of the algorithm.
 (There are many different asymptotic upper bounds to the running time of the algorithm.)

Other Useful Facts: Log vs. Poly vs. Exp

Fact: \(\log_b(n) \) is \(O(n^d) \) for all \(b, d > 0 \)

All polynomials grow faster than logarithm of any base

Fact: \(n^d \) is \(O(r^n) \) when \(r > 1 \)

Exponential functions grow faster than polynomials

Big-O comparison

Which grows faster?

\[n(\log n)^3 \text{ vs. } n^{4/3} \]

divide by common factor \(n \), simplifies to:

\[(\log n)^3 \text{ vs. } n^{1/3} \]

take cubic root, simplifies to:

\[\log n \text{ vs. } n^{1/9} \]

- We know \(\log n \) is \(O(n^d) \) for all \(d > 0 \)
 - \(\Rightarrow \log n \text{ is } O(n^{1/9}) \)
 - \(\Rightarrow n(\log n)^3 \text{ is } O(n^{1/3}) \)

Apply transformations (monotone, invertible) to both functions. Try taking log.

Big-O Motivation

```
Algorithm bar
for i = 1 to n do
  for j = 1 to n do
    for k = 1 to n do
      do something else..
  end for
end for
Fact: run time is \( O(n^3) \)
```

```
Algorithm foo
for i = 1 to n do
  for j = 1 to n do
    do something...
  end for
end for
Fact: run time is \( O(n^3) \)
```

Conclusion: \(\text{foo} \) and \(\text{bar} \) have the same asymptotic running time. What is wrong?
More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i = 1 to n do
 for j = i to n do
 end for
end for

What is the running time of sum-product?
Easy to see it is $O(n^2)$. Could it be better? $O(n)$?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that

$$T(n) \geq cf(n) \text{ for all } n \geq n_0$$

f is an asymptotic lower bound for T

Clicker Question 3

Which is an equivalent definition of big Omega notation?
A. $f(n)$ is $\Omega(g(n))$ if $g(n)$ is $O(f(n))$
B. $f(n)$ is $\Omega(g(n))$ if for any $n \geq 0$ there exists a constant $c > 0$ such that $f(n) \geq c \cdot g(n)$
C. Both A and B
D. Neither A nor B

Big-Ω Exercise

Let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$

Algorithm sum-product
sum = 0
for i = 1 to n do
 for j = i to n do
 end for
end for

Big-Ω: Solution

Hard way
▶ Count exactly how many times the loop executes

$$1 + 2 + \ldots + n = \frac{n(n + 1)}{2} = \Omega(n^2)$$

Easy way
▶ Ignore all loop executions where $i > n/2$ or $j < n/2$
▶ The inner statement executes at least $(n/2)^2 = \Omega(n^2)$ times

For Big-O, we can approximate upwards
For Ω, we can approximate downwards (ignore some computation)