COMPSCI 311: Introduction to Algorithms
Lecture 14: Dynamic Programming – Sequence Alignment

Marius Minea
University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm
Flavor: make “first choice”, then recursively solve remaining part of the problem

Step 2: Write recurrence for optimal value

Step 3: Design bottom-up iterative algorithm

▶ Weighted interval scheduling: first-choice is binary
▶ Rod-cutting: first choice has \(n \) options
▶ Subset Sum: need to “add a variable” (one more dimension)

Today: similarity between sequences

A Simple Case: Minimum Edit Distance

How many edits to go from PLEASANT to PRESENT ?

Levenshtein distance: an edit is

▶ substituting a letter
▶ deleting a letter
▶ inserting a letter

Application: spelling correction
“prefered”: (0) proffered (1) preferred (2) referred ...

Dynamic Time Warping

Measure similarity between two temporal sequences

Speech recognition, speaker recognition, gait recognition
Testing embedded systems (sensor response profile, behavior in given scenario, e.g., braking)

Sequence Alignment: Motivation

▶ Biologists use genetic similarity to determine evolutionary relationships.

▶ How do we evaluate if two gene sequences are similar or not, and how similar they are ?

▶ We align them: Needleman-Wunsch algorithm (global alignment) Also: Smith-Waterman for local alignment (similar regions), not discussed here

▶ Need efficiency for long sequences

▶ Also used in spell-checkers, diff program, search engines.

Sequence Alignment: Definition

Example. TAIL vs TALE

▶ For two strings \(X = x_1 x_2 \ldots x_m, Y = y_1 y_2 \ldots y_n \), an alignment \(M \) is a matching between \(\{1, \ldots, m\} \) and \(\{1, \ldots, n\} \).

▶ \(M \) is valid if

▶ Matching. Each element appears in at most one pair in \(M \).
▶ No crossings. If \((i, j), (k, \ell) \in M\) and \(i < k \), then \(j < \ell \).

▶ Cost of \(M \):

▶ Gap penalty. For each unmatched character, you pay \(\delta \).
▶ Alignment cost. For a match \((i, j)\), you pay \(C(x_i, y_j) \). (in general, depends on the pair of mismatched symbols)

\[
\text{cost}(M) = \delta(m + n - 2|M|) + \sum_{(i,j) \in M} C(x_i, y_j).
\]
Sequence Alignment: Running Example

Problem. Given strings X,Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x,y) = 1[x \neq y]$.

TAIL- I not matched
TA-LE E not matched

Example 2. TAIL vs TALE, $\delta = 5$, $C(x,y) = 1[x \neq y]$.

TAIL
TALE

Clicker Question 1

Suppose we try to align “banana” with “ana” (occurs twice).

The optimal alignment should be with

A: the first match
B: the second match
C: any of the matches
D: depends on the gap and letter mismatch penalties

Recurrence

Let $OPT(i,j)$ be optimal alignment cost of $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_j$.

$$OPT(i,j) = \min \begin{cases} C(x_i, y_j) + OPT(i-1, j-1) & \text{if } (i,j) \text{ matched} \\ \delta + OPT(i-1, j) & \text{if } i \text{ unmatched} \\ \delta + OPT(i, j-1) & \text{if } j \text{ unmatched} \end{cases}$$

And (i,j) is in optimal alignment iff first term is the minimum.

Sequence Alignment Pseudocode

```python
def align(X, Y):
    M = [null for i in range(len(X)+1)]
    for j in range(len(Y)+1):
        M[j] = [null for i in range(len(X)+1)]
    M[0][0] = 0
    for i in range(1, len(X)+1):
        v1 = C(X[i-1], Y[0]) + M[i-1][0]
        v2 = \delta + M[i-1][1]
        v3 = \delta + M[i][0]
        M[i][0] = min(v1, v2, v3)
    for j in range(1, len(Y)+1):
        v1 = C(X[0], Y[j-1]) + M[0][j-1]
        v2 = \delta + M[1][j]
        v3 = \delta + M[0][j-1]
        M[0][j] = min(v1, v2, v3)
    for i in range(1, len(X)+1):
        for j in range(1, len(Y)+1):
            v1 = C(X[i-1], Y[j-1]) + M[i-1][j-1]
            v2 = \delta + M[i-1][j]
            v3 = \delta + M[i][j-1]
            M[i][j] = min(v1, v2, v3)
    return M[len(X)][len(Y)]
```

Example. TALE and TAIL, $\delta = 1$, $C(x,y) = 2 \cdot 1[x \neq y]$.

Toward an Algorithm

- Try what we did before: Let O be optimal alignment.
 - If $(m,n) \in O$ we can align $x_1 x_2 ... x_m \cdot y_1 y_2 ... y_n$.
 - If $(m,n) \notin O$ then either x_m or y_n must be unmatched (if both were matched, we’d have a crossing).
- Value $OPT(m,n)$ of optimal alignment is either:
 - $C(x_m, y_n) + OPT(m-1, n-1)$, if (m,n) matched
 - $\delta + OPT(m-1, n)$, if m unmatched
 - $\delta + OPT(m, n-1)$, if n unmatched

Clicker Question 2

Suppose we try to align “banana” with “ana” (occurs twice).

The optimal alignment should be with

A: the first match
B: the second match
C: any of the matches
D: depends on the gap and letter mismatch penalties
Can We Use Less Space?

So far we’ve focused on time complexity.
But space matters too!
Two sequences of length 10^5 each: 10^{10} (10 GB)

$$\text{OPT}(i, j) = \min \begin{cases} C(x_i, y_j) + \text{OPT}(i - 1, j - 1) \\ \delta + \text{OPT}(i - 1, j) \\ \delta + \text{OPT}(i, j - 1) \end{cases}$$

Computing column $C(\cdot, j)$ only requires column $C(\cdot, j - 1)$
⇒ can keep only two columns (curr, prev), linear space
But: can only compute cost, not recover alignment!

Hirschberg’s algorithm

Edit distance graph.
- Let (i, j) denote length of shortest path from $(0,0)$ to (i,j).
- Lemma: $f(i,j) = \text{OPT}(i,j)$ for all i and j.
- Can compute $f(\cdot,j)$ for any j in $O(mn)$ time and $O(m+n)$ space.

Sequence Alignment in Linear Time

Hirschberg’s algorithm: Divide and Conquer
Approach problem from both ends: forward and backward

Denote: $f(i, j) =$ cost of shortest path from $(0,0)$ to (i, j) in alignment graph (solution so far)
Define $g(i, j) =$ cost of shortest path from (i, j) to (m, n)

$$g(i, j) = \min \begin{cases} C(x_{i+1}, y_{j+1}) + \text{OPT}(i + 1, j + 1) \\ \delta + g(i + 1, j) \\ \delta + g(i, j + 1) \end{cases}$$

Same recurrence, but going backward ⇒ meet in the middle

Dijkstra’s shortest-path algorithm runs in $O(|E| \log |V|)$.
Sequence alignment runs in $O(mn)$ on a graph with $O(mn)$ nodes and edges.
What can we derive from here?
A: We could do shortest paths faster with dynamic programming
B: The $\log |V|$ does not matter compared to $O(|E|)$
C: The graph in sequence alignment is a special case
D: Dijkstra’s algorithm works on undirected graphs

Clicker Question 3

- Sequence Alignment in Linear Time
- Hirschberg’s algorithm: Divide and Conquer
- Approach problem from both ends: forward and backward
- Denote: $f(i, j) =$ cost of shortest path from $(0,0)$ to (i, j) in alignment graph (solution so far)
- Define $g(i, j) =$ cost of shortest path from (i, j) to (m, n)
- Hirschberg’s algorithm works on undirected graphs
- Dijkstra’s shortest-path algorithm runs in $O(|E| \log |V|)$.
- Sequence alignment runs in $O(mn)$ on a graph with $O(mn)$ nodes and edges.

What can we derive from here?
A: We could do shortest paths faster with dynamic programming
B: The $\log |V|$ does not matter compared to $O(|E|)$
C: The graph in sequence alignment is a special case
D: Dijkstra’s algorithm works on undirected graphs

Can We Use Less Space?

So far we’ve focused on time complexity.
But space matters too!
Two sequences of length 10^5 each: 10^{10} (10 GB)

$$\text{OPT}(i, j) = \min \begin{cases} C(x_i, y_j) + \text{OPT}(i - 1, j - 1) \\ \delta + \text{OPT}(i - 1, j) \\ \delta + \text{OPT}(i, j - 1) \end{cases}$$

Computing column $C(\cdot, j)$ only requires column $C(\cdot, j - 1)$
⇒ can keep only two columns (curr, prev), linear space
But: can only compute cost, not recover alignment!

Hirschberg’s algorithm

Edit distance graph.
- Let (i, j) denote length of shortest path from $(0,0)$ to (i,j).
- Lemma: $f(i,j) = \text{OPT}(i,j)$ for all i and j.
- Can compute $f(\cdot,j)$ for any j in $O(mn)$ time and $O(m+n)$ space.
How to Divide and Conquer?

Fact 1 The length of the shortest path through any point (i, j) from $(0, 0)$ to (m, n) is $f(i, j) + g(i, j)$ (shortest path has optimal substructure)

\Rightarrow can split in two parts at some point (i, j) -- which?

Fact 2 Fix a column, $0 < k < n$ and minimize $f(q, k) + g(q, k)$ over all $0 \leq q \leq m$.

Then the shortest path from $(0, 0)$ to (m, n) passes through (q, k).

Hirschberg’s algorithm

Divide. Find index q that minimizes $f(q, n/2) + g(q, n/2)$; save node $i-j$ as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

Complexity Analysis

Recurrence

$O(mn)$ work to build array of alignment costs

$T(m, n) \leq c \cdot mn + T(q, n/2) + T(m - q, n/2)$

Two-dimensional recurrence, don’t know q.

Intuition: simplified case $m = n$ and assuming $q = n/2$, we get $T(n) \leq cn^2 + 2T(n/2)$, for $T(n) = T(n, n)$

This solves to $T(n) = O(n^2)$

Can guess $T(m, n) \leq k \cdot mn$, prove by induction

Hirschberg’s Linear-Space Algorithm

align(X, Y)

if $m < 2$ or $n < 2$ then solve directly

Compute $f(:, n/2)$ and $g(:, n/2)$ in linear space

Find q minimizing $f(q, n/2) + g(q, n/2)$.

Store pair $(q, n/2)$ \triangleright part of alignment

align(X[0:q], Y[0:n/2])

align(X[q+1:m], Y[n/2+1:n]) \triangleright reuse memory

Sequence Alignment: Summary

Problem structure: simple

Memory requirement: more subtle

DP + Divide and Conquer

More sequences: RNA secondary structure

match maximum number of bases

problem substructure: over intervals