Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Recursion May Be Easy .. But Sometimes Inefficient

Fibonacci sequence: $F(0) = 0$, $F(1) = 1$, $F(n) = F(n-1) + F(n-2)$

Compute by straightforward recursion:

```
        F(5)
         /   \
        F(4) F(3)
       /     /
      F(3) F(2) F(1)
     /     /   /   /
    F(2) F(1) F(0) F(1) F(0)
   /     /   /     /     /
  F(1) F(0) F(1) F(0) F(0)
```

Clicker Question 1

Consider the following function to compute Fibonacci numbers:

```python
def fib(n):
    if n < 2 return n;
    return fib(n-1) + fib(n-2);
```

The complexity of `fib(n)` is

A. $\Theta(n \log_2 3)$
B. $\Theta(F(n))$
C. $\Theta(2^n)$
D. $\Theta(n!)$

Dynamic Programming Recipe

- **Step 1:** Devise simple recursive algorithm
 - Usually for optimization: try all choices at one level, solve subproblems
 - But: subproblems often shared ⇒ redundant computation (may be exponential time)

- **Step 2:** Write recurrence for optimal value

- **Step 3:** Design iterative algorithm (avoids redundancy)
Weighted Interval Scheduling

- TV scheduling problem: Given \(n \) shows with start time \(s_i \) and finish time \(f_i \), watch as many shows as possible, with no overlap.
- A Twist: Each show has a value \(v_i \). We want a set of shows \(S \), with no overlap and maximum value \(\sum_{i \in S} v_i \).
- Greedy? It worked for case without values

Problem formulation

- Show (job) \(j \) has value \(v_j \), start time \(s_j \), finish time \(f_j \)
- Assume shows sorted by finishing time \(f_1 \leq f_2 \leq \ldots \leq f_n \)
- Shows \(i \) and \(j \) are compatible if they don’t overlap
- Goal: subset of non-overlapping jobs with maximum value

Step 1: Recursive Algorithm

- Observation: Let \(O \) be the optimal solution.
 Last interval \(n \) is either in \(O \) or it isn’t.
 In both cases, we get a **smaller instance** of the same problem.

 - Recursive algorithm: value of optimal subset of first \(j \) shows (going backwards from \(j \))

 - **Compute-Value** \((j) \)
 - **Base case**: if \(j = 0 \) return 0
 - **Case 1**: \(j \in O \)
 - Let \(i < j \) be highest-numbered show compatible with \(j \)
 - \(v_{j} = v_{j} + \text{Compute-Value}(i) \)
 - **Case 2**: \(j \not\in O \)
 - \(v_{j} = \text{Compute-Value}(j - 1) \)
 - return max\((v_{j}, v_{j}) \)

 - The running time of this recursive solution is
 - A: \(O(n \log n) \)
 - B: \(O(n^2) \)
 - C: \(O(1.618^n) \)
 - D: \(O(2^n) \)

Step 2: Recurrence

- Recurrence: directly expresses solution (optimal value) in terms of solutions for subproblems (recursive structure)
 - \(\text{OPT}(j) = \text{value of optimal solution on first } j \text{ shows} \)
 - \(p_j \): highest-numbered show that is compatible with \(j \)
 - Recurrence:
 \[
 \begin{align*}
 \text{OPT}(0) &= 0 \\
 \text{OPT}(j) &= \max\{v_j + \text{OPT}(p_j), \text{OPT}(j - 1)\}
 \end{align*}
 \]
 - Case 1
 - Case 2

Recursive Algorithm vs. Recurrence

- **Compute-Value** \((j) \)
 - If \(j = 0 \) return 0
 - \(v_{j} = v_{j} + \text{Compute-Value}(p_j) \)
 - \(v_{j} = \text{Compute-Value}(j - 1) \)
 - return max\((v_{j}, v_{j}) \)

- **Tip**: start by writing the recursive algorithm and translating it to a recurrence (replace method name by “OPT”)
 - After some practice, skip straight to the recurrence
Step 3: Iterative “Bottom-Up” Algorithm

WeightedIS
Initialize array M of size n to hold optimal values
$M[0] = 0$ \hspace{1cm} \triangleright \text{Value of empty set}
for $j = 1$ to n
$M[j] = \max(v_j + M[p_j], M[j - 1])$
end for

Usually we directly convert recurrence to appropriate for loop.
Pay attention to dependence on previously-computed array entries to know in which direction to iterate.

Memoization

Intermediate approach: keep recursive function structure, but store value in array on first computation, and reuse it
Initialize array M of size n to empty, $M[0] = 0$
function $Mfun(j)$
if $M[j] = \text{empty}$
$M[j] = \max(v_j + Mfun(p_j), Mfun(j-1))$
return $M[j]$
end if
Can help if we have recursive structure but unsure of iteration order
Or as intermediate step in converting to iteration

Clicker Question 3

The asymptotic complexity of the memoized algorithm is
A: Same as the initial recurrence
B: Between the initial recurrence and the iterated version
C: Same as the iterated version

Epilogue: Recovering the Solution (1)

Idea: modify the algorithm to what choice is made at each iteration
WeightedIS
Initialize array $M[0 \ldots n]$ to hold optimal values
Initialize array $\text{choose}[1 \ldots n]$ to hold choices
$M[0] = 0$
for $j = 1$ to n
$M[j] = \max(v_j + M[p_j], M[j - 1])$
Set $\text{choose}[j] = 1$ if first value is bigger, and 0 otherwise
end for

Epilogue: Recovering the Solution (2)

Then trace back from end and "execute" the choices
Use algorithm above to fill in M and choose arrays
$O = \{\}$
$j = n$
while $j > 0$
if $\text{choose}(j) == 1$
$O = O \cup \{j\}$
$j = p_j$
else
$j = j - 1$
end if
end while

Tip: first do algorithm to just compute optimal value; then modify it to compute the actual solution

Review

- Recursive algorithm \rightarrow recurrence \rightarrow iterative algorithm
- Three ways of expressing value of optimal solution for smaller problems
 - Compute-Value(j). Recursive algorithm—arguments identify subproblems.
 - OPT(j). Mathematical expression. Write a recurrence for this that matches recursive algorithm.
Key Step: Identify Subproblems

- Finding solution means: make “first choice”, then recursively solve a smaller instance of same problem.
- First example: Weighted Interval Scheduling
 - Binary first choice: \(j \in O \) or \(j \notin O \)?
- Next example: rod cutting
 - First choice has \(n \) options

First choice?

- Greedy? Cut length with maximum price
- Or: cut piece with maximum price per length?
- Divide and Conquer:
 Break rod at some (integer) point. Recurse for pieces.
- Dynamic Programming:
 Choose length \(i \) of first piece, then recurse on rest

Step 3: Iterative Algorithm

- Array \(M[0..n] \) where \(M[i] \) holds value of \(\text{OPT}(i) \).
- Order to fill \(M \)? From 0 to \(n \).

CutRod-Iterative

- Initialize array \(M[0..n] \)
- Set \(M[0] = 0 \)
- for \(j = 1 \) to \(n \) do
 - \(v = 0 \)
 - for \(i = 1 \) to \(j \) do
 - \(v = \max(v, p[i] + M[j-i]) \)
 - end for
 - Set \(M[j] = v \)
- end for

- Running time? \(\Theta(n^2) \) Note: body of for loop identical to recursive algorithm, directly implements recurrence

Rod Cutting

- Problem Input:
 - Steel rod of length \(n \), can be cut into integer lengths
 - Price based on length, \(p(i) \) for a rod of length \(i \)
- Goal
 - Cut rods into lengths \(i_1, \ldots, i_k \) such that \(i_1 + i_2 + \ldots + i_k = n \).
 - Maximize value \(p(i_1) + p(i_2) + \ldots + p(i_n) \)

Steps 1 and 2

Step 1: Recursive Algorithm.

\[
\text{CutRod}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v, p[i] + \text{CutRod}(j-i) \} & \text{else}\end{cases}
\]

- Running time for \(\text{CutRod}(n) \)? \(\Theta(2^n) \)

Step 2: Recurrence

\[
\text{OPT}(j) = \max_{1 \leq i \leq j} \{ p[i] + \text{OPT}(j-i) \}
\]

\(\text{OPT}(0) = 0 \)

Epilogue: Recover Optimal Solution

- Run previous algorithm to fill in \(M \) array
- \(\text{cuts} = \{ \} \)
- \(j = n \)
- while \(j > 0 \) do
 - \(i^* = \text{null}, v = 0 \) \(\triangleright i^* \) is the selected cut, \(v \) is its value
 - for \(i = 1 \) to \(j \) do
 - if \(p[i] + M[j-i] > v \) then
 - \(i^* = i \)
 - \(v = p[i] + M[i] \)
 - end if
 - end for
 - \(j = j - i^* \)
 - \(\text{cuts} = \text{cuts} \cup \{ i^* \} \)
- end while