COMPSCI 311: Introduction to Algorithms
Lecture 12: Counting Inversions. Closest Pair of Points
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon
4 March 2019

Master Theorem
Consider the general recurrence:
\[T(n) \leq aT\left(\frac{n}{b}\right) + cn^d \]
This solves to:
\[T(n) = \begin{cases}
 \Theta(n^d) & \text{if } \log_b a < d \\
 \Theta(n^d \log n) & \text{if } \log_b a = d \\
 \Theta(n^{\log_b a}) & \text{if } \log_b a > d
\end{cases} \]
Intuition: work at each level of the recursion tree is (1) decreasing exponentially, (2) staying the same, (3) increasing exponentially.

Clicker Question 1: Master Theorem
Consider the general recurrence:
\[T(n) \leq aT\left(\frac{n}{b}\right) + cn^d \]
Clicker. How much work is done outside recursion at the root of the recursion tree?
A. \(\Theta(n^a) \)
B. \(\Theta(n^d) \)
C. \(\Theta(n^d \log n) \)
D. None of the above
The work done at the root is \(\Theta(n^d) \)

Clicker Question 2: Master Theorem
Consider the general recurrence:
\[T(n) \leq aT\left(\frac{n}{b}\right) + cn^d \]
Clicker. How many leaves are in the recursion tree?
A. \(\Theta(a \log_b n) \)
B. \(\Theta(b \log_a n) \)
C. \(\Theta(n \log_b a) \)
D. Both a and c
The work done at the leaves (base cases) is \(\Theta(n \log_b a) \)

Counting Inversions: Motivation
\(n \) objects, ranked in linear order by different sources
\[
\begin{array}{cccccc}
A & B & C & D & E \\
\text{RankList1} & 3 & 4 & 2 & 1 & 5 \\
\text{RankList2} & 4 & 2 & 1 & 3 & 5 \\
\end{array}
\]
How similar are these rankings?
Applications:
- Recommendation systems (collaborative filtering)
- Stability / sensitivity of web ranking functions
- Meta-search tools: compare & aggregate search engines
- Measure “sortedness” of an array

Similarity Metric: Number of Inversions
\[
\begin{array}{cccccc}
A & B & C & D & E \\
\text{RankList1} & 3 & 4 & 2 & 1 & 5 \\
\text{RankList2} & 4 & 2 & 1 & 3 & 5 \\
\end{array}
\]
A pair \(\{X, Y\} \subseteq \{A, B, C, D, E\} \) has an inversion between the two rankings if \(\text{rank}_1(X) < \text{rank}_1(Y) \) but \(\text{rank}_2(X) > \text{rank}_2(Y) \) or vice-versa.
Alternate view: Take Rank1 as reference point and renumber objects based on that rank: \(D = 1, C = 2, A = 3, B = 4, E = 5 \).
Rewrite Rank2 as \(R' \), ranking each of the new IDs
\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\text{R'} & 3 & 1 & 4 & 2 & 5 \\
\end{array}
\]
Say \(i \) and \(j \) are inverted if \(i < j \) but \(R'(i) > R'(j) \)
Is this the same definition? (Has the number of inversions changed?)
Clicker Question 3: Inversions

A B C D E
RankList1 3 4 2 1 5
RankList2 4 2 1 3 5

Rename D = 1, C = 2, A = 3, B = 4, E = 5, rewrite:
1 2 3 4 5
R’ 3 1 4 2 5

Does the number of inversions change?
A) Yes, it has changed
B) No, it never changes
C) It has not changed here, but changes in other cases

Trying Divide-and-Conquer

▶ Divide: into two array halves, A and B
▶ Conquer: recursively count inversions in each list
▶ Combine: add the two counts plus inversions between halves: (a, b) with a ∈ A, b ∈ B

Example:

| 2 | 4 | 7 | 9 | 3 | 10 | 1 | 5 | 8 | 6 |
| 2 | 4 | 7 | 9 | 3 | | 10 | 1 | 5 | 8 | 6 |
3 (4-3, 7-3, 9-3) 5 (10 - all, 8-6)
Inversions between halves: ???

Clicker Question 4

What do we need to combine the subproblems?

To count inversions between the array halves, we’d need to:
A) Know min and max values in both halves
B) Know min and max values in both halves and their positions
C) Neither of the above is enough

Counting Inversions between halves

▶ Need to compare each element on left with each on right brute force: $O(n^2)$
▶ Avoid redundant work: know something about relative order
▶ What if elements in each half were sorted?
| 2 | 3 | 4 | 7 | 9 | | 1 | 5 | 6 | 8 | 10 |
| 1 | 1 | 1 | 3 | 4 | inversions with B per element of A

How to count these inversions? **binary search**
Find smallest index i so $a < b_i$. Then a has i inversions with B.
If no such index ($a > b_i$ for all i), $|B|$ inversions.

Combining Counting and Sorting

▶ Inductive assumption: halves are sorted
▶ Must reestablish when combining: **MERGE-AND-COUNT**
▶ Merge as usual (left-to-right), compare a_i to b_j
 ▶ all inversions so far accounted for
 ▶ if $a_i < b_j$, pick a_i, no extra inversions
 | | | 4 | 7 | 9 | | 5 | 6 | 8 | 10 |
 ▶ if $a_i > b_j$, pick b_j, inverted with remaining elements in A
 | | | 7 | 9 | | 5 | 6 | 8 | 10 |

Counting Inversions: **Algorithm**

SORT-AND-COUNT(L)
if L has one element then return $(0, L)$
end if
Divide list L into halves A and B $\triangleright T(n/2)$
$(c_A, A) = \text{SORT-AND-COUNT}(A)$ $\triangleright T(n/2)$
$(c_B, B) = \text{SORT-AND-COUNT}(B)$ $\triangleright \Theta(n)$
$(c_{AB}, L) = \text{MERGE-AND-COUNT}(A, B)$
return $(c_A + c_B + c_{AB}, L)$

▶ Complexity? $\Theta(n \log n)$
▶ Take-away:
 ▶ have solved more than asked for (also sorted)
 ▶ extra work means $\Omega(n \log n)$ (mergesort)
 ▶ but helps do required work efficiently (also $O(n \log n)$)
Finding Minimum Distance between Points

- **Problem 1**: Given n points on a line $p_1, p_2, \ldots, p_n \in \mathbb{R}$, find the closest pair: $\min_{p \neq q} |p_i - p_j|$.
 - Compare all pairs $O(n^2)$
 - Better algorithm? Sort and compare adjacent pairs. $O(n \log n)$

- **Problem 2**: Now what if the points are in \mathbb{R}^2?
 - Compare all pairs $O(n^2)$
 - Sort? Points can be close in one coordinate and far in other
 - We’ll do it in $O(n \log n)$ steps using divide-and-conquer.

Minimum Distance: Recursive Algorithm

1. Find vertical line L to split points into sets P_L, P_R of size $n/2$. $O(n)$
2. Recursively find minimum distance in P_L and P_R.
 - $\delta_L =$ minimum distance between $p, q \in P_L, p \neq q$. $T(n/2)$
 - $\delta_R =$ same for P_R. $T(n/2)$
3. $\delta_M =$ minimum distance between $p \in P_L, q \in P_R$. ??
4. Return $\min(\delta_L, \delta_R, \delta_M)$.

Naive Step 3 takes $\Omega(n^2)$ time. But if we do it in $O(n)$ time we get

$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$

Problem Formulation

- **Input**: set of points $P = \{p_1, \ldots, p_n\}$ where $p_i = (x_i, y_i)$
- **Assumption**: we can iterate over points in order of x- or y-coordinate in $O(n)$ time.
 Pre-generate data structures to support iteration cost: $O(n \log n)$ time.

Making Step 3 Efficient

- **Goal**: given δ_L, δ_R, compute $\min(\delta_L, \delta_R, \delta_M)$
- Let $\delta = \min(\delta_L, \delta_R)$. If $p \in P_L, q \in P_R$ are at least δ apart, they cannot be a closer pair, so we can ignore pair (p, q).
- Let S be the set of points within distance δ from L. We only need to consider pairs that are both in S.
- For a given point $p \in S$, how many points q are within δ units of p in the y coordinate?

How to find closest pair with one point in each side?

Def. Let s_i be the point in the 2δ-strip, with the ith smallest y-coordinate.

Claim. If $|j-i| > \gamma$, then the distance between s_i and s_j is at least δ.

PF.
- Consider the 2δ-by-δ rectangle R in strip whose min y-coordinate is y-coordinate of s_i.
- Distance between s_i and any point s_j above R is $\geq \delta$.
- Subdivide R into 8 squares.
 - At most 1 point per square.
 - At most 7 other points can be in R.

constant can be improved with more refined geometric packing argument

Clicker Question 5

What is the maximum number of points with larger y coordinate that we need to compare to s_i?

A. 3 points
B. 4 points
C. 7 points
D. 8 points

slide credit: Kevin Wayne / Pearson
Wrap-Up

- Step 3 is $O(n)$: iterate in order of y coordinate and compare each point to constant number of neighbors.
- $\Rightarrow O(n \log n)$ overall.
- **Intuition**: we reduced Step 3 (almost) to 1D closest-pair
 - Iterate, compare each point to next k points (instead of 1)
 - The set S is “nearly one-dimensional”. Points cannot be packed too tightly, because pairs on each side have to be at least δ apart.
- For $d > 2$ dimensions, there is a divide and conquer algorithm where the “combine” step (i.e., Step 3) solves a closest pair problem in $d - 1$ dimensions.