Divide and Conquer: Recipe

- Divide problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution

Learning Goals

<table>
<thead>
<tr>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td>✓</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>✓</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>✓</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>✓</td>
</tr>
<tr>
<td>Specific algorithms</td>
<td>Dijkstra, MST</td>
</tr>
</tbody>
</table>

Motivating Problem: Maximum Subsequence Sum (MSS)

- **Input**: array A of n numbers, e.g., $A = 4, -3, 5, -2, -1, 2, 6, -2$
- **Find**: value of the largest subsequence sum $A[i] + A[i+1] + \ldots + A[j]$ (empty subsequence allowed and has sum zero)
- MSS in example? 11 (first 7 elements)
- Can we extract any observations?

Clicker Question 3

Which of the following is true for a maximum-sum subsequence?

A. It has more positive than negative numbers
B. It does not start nor end with a negative number
C. Any maximal sequence of negative numbers is bordered by a sequence of positive numbers with sum larger in absolute value

A Simple MSS Algorithm

A Problem from HW1 (replace max with sum)

MSS(A)

```
Initialize all entries of $n \times n$ array $B$ to zero
for $i = 1$ to $n$
    $sum = 0$
    for $j = i$ to $n$
        compute sum of $A[i] \ldots A[j]$  \(\triangleright\) HW1: max
        $B[i,j] = sum$
    end for
end for
Return maximum value among all $B[i,j]$
```

Running time? $O(n^2)$. Can we do better?
Divide-and-conquer for MSS

- Recursive solution for MSS

- Idea:
 - Find MSS L in left half of array
 - Find MSS R in right half of array
 - Find MSS M for sequence that crosses the midpoint

$$A = \begin{cases} \frac{M+11}{\log 6} \\ \text{if } \mid \begin{array} {c} M =1 \\ L = 6 \end{array} \right. \right.$$

- Return $\max(L, R, M)$
- Exercise: change one entry to make MSS = R. decrease one of -2, -1 by more than 3.
- How to find L, R, M?

MSS(A, left, right)
if right − left ≤ 2 then
Solve directly and return MSS
end if
mid = ⌊left+right / 2⌋
L = MSS(A, left, mid)
R = MSS(A, mid+1, right)
Set sum = 0
for i = mid down to 1 do
 sum += $A[i]$
end for
$L' =$ max(L, sum)
return L.

Running time?
- Let $T(n)$ be running time of MSS on array of size n
- Two recursive calls on arrays of size $n/2$: $2T(n/2)$
- Work outside of recursive calls: $O(n)$
- Running time

$$T(n) = 2T(n/2) + O(n)$$

Recurrence

- Recurrence (with convenient base case)

$$T(n) = 2T(n/2) + O(n)$$

... could choose other convenient base case(s): $T(0)$, $T(2)$, ...
- Goal: solve the recurrence = find simple expression for $T(n)$
- First, let's use definition of Big-O:

$$T(n) \leq 2T(n/2) + cn$$
$$T(1) \leq c$$

- What next?

Solving the Recurrence

- Same recurrence with change of variable

$$T(m) \leq 2T(m/2) + cm, \ m \geq 2$$
$$T(1) \leq c$$

- no difference, but sometimes helpful conceptually
- n = original input size, m = generic input size
- Three approaches to solve it
 1. Unrolling
 2. Recursion tree (another version of unrolling)
 3. Guess and verify (proof by induction)

Recurrence Solving (1): Unrolling

- Idea 1: “unroll” the recurrence

$$T(n) \leq 2T(n/2) + cn$$
equation in n
$$\leq 2^2 \left[2T(n/2^2) + c(n/2) \right] + cn \quad n \rightarrow \frac{n}{2}$$
$$= 2^2 \left[2T(n/2^2) + 2cn \right] \quad n \rightarrow \frac{n}{4}$$
$$\leq \cdots$$

- Do you see a pattern? $2^k T(n/2^k) + k \cdot cn$
- When does this stop?
 Base case: $n/2^k = 1 \Rightarrow k = \log n$ unrollings

$$T(n) \leq 2^{\log n} \cdot T(1) + \log n \cdot cn = c_1 n + cn \log n = O(n \log n)$$
Recurrence Solving (2): Recursion Tree

![Recursion Tree Diagram]

Clicker Question 2

Suppose we have the recurrence $T(n) = T(n/2) + T(n/3)$.

What do we get after two unrollings?

A. $T(n/4) + T(n/9)$
B. $T(n/4) + 2T(n/6) + T(n/9)$
C. $2T(n/6)$
D. $T(n/4) + T(n/6) + T(n/9)$

Clicker Question 3

What is the work done at each level of recursive calls?

A. cn
B. $2kT(n/2k)$
C. $2kT(n/2k) + cn$
D. cn, except $cn \log n$ for all the leaves.

Recurrence Solving (3): Guess and Verify

- Guess solution
- Prove by (strong) induction

$$T(n) \leq 2T(n/2) + cn$$

Guess solution $T(n) \leq kn \log n$, find k so it works.

Choose base case $n = 2 \Rightarrow T(2) \leq 2k \log 2, k \geq T(2)/2$.

$n = 1$ won’t work as base case, since $\log 1 = 0$ (but small n does not matter for big-O)

Guess and Verify: Induction Step

Strong induction:

Assume $T(m) \leq k \cdot m \log m$ for all $m < n$, prove for n

$$T(n) \leq 2 \cdot T(n/2) + cn$$

$$\leq 2 \cdot k(n/2) \log(n/2) + cn$$

$$= kn(\log n - 1) + cn$$

$$= kn \log n + (c - k)n \leq kn \log n$$

if $k \geq c$

\Rightarrow choose $k = \max(c, T(2)/2)$.

The induction proof is complete, $T(n) \leq kn \log n$.

A More General Recurrence

$$T(n) \leq q \cdot T(n/2) + cn$$

- What does the algorithm look like?
- q recursive calls to itself on problems of half the size
- $O(n)$ work outside of the recursive calls

- **Exercises**: $q = 1, q > 2$

- **Useful fact (geometric sum)**: if $r \neq 1$

$$\frac{1 + r + r^2 + \ldots + r^d}{1 - r} = \frac{r^{d+1} - 1}{r - 1}$$