COMPSCI 311: Introduction to Algorithms
Lecture 10: Divide and Conquer
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon

Review: Solving Recurrences

Useful general recurrence and its solutions:

\[T(n) \leq q \cdot T(n/2) + cn \]

1. \(q = 1 \): \(T(n) = O(n) \) more work at top level of tree
2. \(q = 2 \): \(T(n) = O(n \log n) \) equal contributions
3. \(q > 2 \): \(T(n) = O(n \log^2 q) \) more work towards base

More general: Master Theorem

Let \(T(n) = aT(n/b) + f(n) \), with \(a \geq 1, b > 1 \). Then:

1. \(T(n) = \Theta(n^{\log_b a}) \) when \(f(n) = O(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \)
 \(f(n) \) grows polynomially slower than \(n^{\log_b a} \) pause
2. \(T(n) = \Theta(n^{\log_b a} \log n) \) when \(f(n) = \Theta(n^{\log_b a}) \) (border case)
 \(T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \) when \(f(n) = \Theta(n^{\log_b a} \log^k n) \)
3. \(T(n) = \Theta(f(n)) \) when \(f(n) = \Omega(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \) and
 \(af(n/b) < cf(n) \) for some \(c < 1 \) when \(n \) sufficiently large
 \(f(n) \) grows polynomially faster than \(n^{\log_b a} \)

Does not cover everything: gaps between 1 and 2, and 2 and 3
Guess and prove by induction for other cases

Clicker Question 1

Which of the following is not true?

A) \(n \log n = O(n^2) \)
B) \(n \log n = O(n^{1.1}) \)
C) There exists a large enough \(k \) with \(n \log n = \Theta(n^k) \)
D) \(n \log n = \Omega(n \log \log n) \)

Clicker Question 2

Recall the Master theorem for \(T(n) = aT(n/b) + f(n) \):
1. \(T(n) = \Theta(n^{\log_b a}) \) when \(f(n) = O(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \)
2. \(T(n) = \Theta(n^{\log_b a} \log n) \) when \(f(n) = \Theta(n^{\log_b a}) \)
3. \(T(n) = \Theta(f(n)) \) when \(f(n) = \Omega(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \) and
 \(af(n/b) < cf(n) \) for some \(c < 1 \) when \(n \) sufficiently large

If \(T(n) = 9T(n/3) + f(n) \) solves to \(T(n) = \Theta(n^2) \), what can \(f(n) \) be? Choose the best answer.

A) \(f(n) = O(n) \)
B) \(f(n) = O(n \log n) \)
C) \(f(n) = O(n \log^2 n) \)
D) \(f(n) = O(n^2) \)

Integer Multiplication

Motivation: multiply two 30-digit integers?

153819617987625488624070712657
\(\times \) 925421863832406144537293648227

Multiply two 300-digit integers?
Cannot do this in Java with built-in data types
64-bit unsigned integer can only represent integers up to \(\approx 10^{20} \)

Input: two \(n \)-digit base-10 integers \(x \) and \(y \)
Goal: compute \(xy \)
Algorithm?
Warm-Up: Addition

Input: two n-digit binary integers x and y

Goal: compute $x + y$

We’ll do it in base-10 instead of binary (perhaps more familiar).

Grade-school algorithm:

<p>| 1854 |</p>
<table>
<thead>
<tr>
<th>+ 3242</th>
</tr>
</thead>
<tbody>
<tr>
<td>5096</td>
</tr>
</tbody>
</table>

Running time? $\Theta(n)$

Grade-School Algorithm (Long Multiplication)

Example: $n = 3$

<p>| 287 |</p>
<table>
<thead>
<tr>
<th>x 132</th>
</tr>
</thead>
<tbody>
<tr>
<td>574</td>
</tr>
<tr>
<td>861</td>
</tr>
<tr>
<td>287</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>37884</td>
</tr>
</tbody>
</table>

Running time? $\Theta(n^2)$

But xy has at most $2n$ digits. Can we do better?

Divide and Conquer – First Try: An Example

Idea: split x and y in half (assume n is a power of 2)

$$x = \underbrace{3380}_{x_1} \underbrace{2367}_{x_0}$$

$$y = \underbrace{4508}_{y_1} \underbrace{1854}_{y_0}$$

Then use distributive law

$$xy = (10^{n/2}x_1 + x_0) \times (10^{n/2}y_1 + y_0)$$

$$= 10^n x_1y_1 + 10^{n/2} (x_1y_0 + x_0y_1) + x_0y_0$$

Have reduced the problem to multiplications of $n/2$-digit integers and additions of n-digit numbers

Divide and Conquer – First Try: Analysis

Recursive algorithm:

$$xy = 10^n x_1y_1 + 10^{n/2} (x_1y_0 + x_0y_1) + x_0y_0$$

Running time?

Four multiplications of $n/2$ digit numbers plus three additions of at most n-digit numbers

$$T(n) \leq 4T\left(\frac{n}{2}\right) + cn$$

Does this fit in our general formulas?

$$= O(n^{\log_2 4})$$

$$= O(n^2)$$

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

$$xy = 10^n x_1y_1 + 10^{n/2} (x_1y_0 + x_0y_1) + x_0y_0$$

Trick: use three multiplications to compute the following:

$$A = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

$$B = x_1y_1$$

$$C = x_0y_0$$

Then

$$xy = 10^n B + 10^{n/2} (A - B - C) + C$$

Total: three multiplications of $n/2$-digit integers, six additions of at most n-digit integers

$$T(n) \leq 3T\left(\frac{n}{2}\right) + cn$$

$$= O(n^{\log_2 3})$$

$$\approx O(n^{1.59})$$

We beat long multiplication!

Can be done even faster (split x and y into k parts instead of two)
Finding Minimum Distance between Points

- **Problem 1**: Given n points on a line $p_1, p_2, \ldots, p_n \in \mathbb{R}$, find the closest pair: $\min_{i \neq j} |p_i - p_j|$.
 - Compare all pairs $O(n^2)$
 - Sort the points and compare adjacent pairs $O(n \log n)$
 - Can you directly do divide-and-conquer? Need median

- **Problem 2**: Now what if the points are in \mathbb{R}^2?
 - Compare all pairs $O(n^2)$
 - Sort? Points can be close in one coordinate and far in the other
 - We’ll do it in $O(n \log n)$ steps using divide-and-conquer.
 - **Input**: set of points $P = \{p_1, \ldots, p_n\}$ where $p_i = (x_i, y_i)$

Minimum Distance: Recursive Algorithm

- **Assumption**: we can iterate over points in order of x- or y-coordinate in $O(n)$ time.
 - Pre-sort in $O(n \log n)$ time along each axis (two arrays).
 1. Find vertical line L to split points into sets P_L, P_R of size $n/2$, $O(n)$
 2. Recursively find minimum distance in P_L and P_R.
 - $\delta_L = \min$ distance between $p, q \in P_L, p \neq q, T(n/2)$
 - $\delta_R =$ same for $P_R, T(n/2)$
 3. $\delta_M =$ minimum distance between $p \in P_L, q \in P_R$??
 4. Return $\min(\delta_L, \delta_R, \delta_M)$.
 - Naive Step 3 takes $\Omega(n^2)$ time. But if we do it in $O(n)$ time we get
 $$T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

Making Step 3 Efficient

- **Goal**: given δ_L, δ_R, compute $\min(\delta_L, \delta_R, \delta_M)$
 - Let $\delta = \min(\delta_L, \delta_R)$. If $p \in P_L, q \in P_R$ are at least δ apart, they cannot be a closer pair, so we can ignore pair (p, q).
 - Let S be the set of points within distance δ from L (vertical strip centered on line L).
 - We only need to consider pairs that are both in S.
 - For a given point $p \in S$, how many points q are within δ units of p in the y coordinate?

How to find closest pair with one point in each side?

- **Def.** Let s_i be the point in the 2δ-strip, with the ith smallest y-coordinate.

- **Claim.** If $|j - i| > 7$, then the distance between s_i and s_j is at least δ.

- **Proof.**
 - Consider the 2δ-by-δ rectangle R in strip whose min y coordinate is y-coordinate of s_i.
 - Distance between s_i and any point s_j above R is $> \delta$.
 - Subdivide R into 8 squares.
 - At most 1 point per square.
 - At most 7 other points can be in R. •

Clicker Question 3

Based on the split into squares in the figure, it suffices to compare each point in the vertical strip to

A) 7 points

B) 14 points

C) 4 points

Concluding the Merge Step

- Compute sorted lists S_L and S_R of close points left and right of the line L select in $O(n)$
 - Advance in both lists by increasing y coordinate (merge-like) $O(n)$ iterations
 - Compare to at most 4 following points in other list $O(1)$ work in loop
 - Minimum distance across halves in $O(n)$
 - Overall recursion gives $O(n \log n)$