
COMPSCI 311: Introduction to Algorithms Spring 2020

Homework 5
Released 4/2/2020 Due 4/15/2020 11:59pm in Gradescope

Instructions. You may work in groups, but you must write solutions yourself. List collaborators on your
submission. Also list any sources of help (including online sources) other than the textbook and course staff.

If you are asked to design an algorithm, please provide: (a) the pseudocode or precise description in words
of the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the
running time of your algorithm and (e) justification for your running time analysis.

Submissions. Please submit a PDF file. You may submit a scanned handwritten document, but a typed
submission is preferred. Please assign pages to questions in Gradescope.

1. (10 points) Increasing Capacities (K&T 7.5) Prove the following claim or provide a counterexample:
Let (A,B) be a minimum s− t cut in a flow network. Add 1 to the capacity of every edge in the network.
Then (A,B) is still a minimum cut for the new network.

2. (10 points) Greedy Flow (Erickson 10.17) An eager student of network flow proposes the following
change to the Ford-Fulkerson algorithm: instead of computing a residual graph, it looks for an augmenting
path in the flow network, decreases edge capacities on the found path by the flow on this path, and repeats
the process. Saturated edges just get deleted. Show that GreedyFlow does not compute a maximum flow.

3. (20 points) Cold War Flow Nation A is preparing for a potential armed conflict with Nation B. They are
concerned with how many military units B could move at one time from their home base to the battlefield.
They have modeled B’s transportation network as a directed graph G, where every edge has the same
capacity, there is one source node at the base, and one target node at the battlefield. They have computed
that the maximum flow through this network is F.

A has a network of spies and saboteurs throughout B’s territory. In the event of war, these agents could
disable a fixed number k of the edges in B’s network. A’s planners would like to compute which edges they
should choose to reduce the capacity of B’s network the most. Present an algorithm to let them do this,
that takes as input G and k and gives a set of k edges as output. Prove that your algorithm is correct, and
find its big-O running time, which should be polynomial in m (the number of edges in G).

4. (20 points) Acyclic Flows (Erickson 10.6) An (s, t)-flow in a network G is acyclic if there are no directed
cycles with positive flow value on every edge; i.e., the subgraph of edges with positive flow value is a DAG.
(a) Describe and analyze an algorithm to compute an acyclic maximum (s, t)-flow in a given flow network.
Your algorithm should have the same asymptotic running time as Ford-Fulkerson.
(b) Describe and analyze an algorithm to determine whether every maximum (s, t)-flow in a given flow
network is acyclic.

5. (20 points) Separating Edges (Erickson 10.11) This problem explores defining a cut using a set of
edges rather than a set of nodes. We say that a subset X of directed edges separates s and t if every directed
path from s to t contains at least one directed edge in X . For any subset S of vertices, let δS denote the
set of directed edges leaving S; that is, δS := {u→ v | u ∈ S, v /∈ S}.
(a) Prove that if (S, T ) is an (s, t)-cut, then δS separates s and t.
(b) Let X be any subset of edges that separates s and t. Prove there is an (s, t)-cut (S, T ) such that δS ⊆ X.
(c) Let X be a minimal subset of edges that separates s and t. (Such an edge set is sometimes called a bond.)
Prove that there is an (s, t)-cut (S, T ) such that δS = X.

6. (20 points) Incremental Change (Erickson 10.14) You are given a flow network G with integer edge
capacities and an integer maximum flow f∗ in G. Design algorithms for the following operations:
(a) Increment(e): Increase the capacity of edge e by 1 and update the maximum flow.
(b) Decrement(e): Decrease the capacity of edge e by 1 and update the maximum flow.
Both algorithms should update the maximum flow in time O(m+ n).

7. (0 points). How long did it take you to complete this assignment?
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