
COMPSCI 311: Introduction to Algorithms Spring 2020

Homework 1
Released 1/26/2020 Due 2/10/2020 11:59pm in Gradescope

Instructions. You may work in groups, but you must write solutions yourself. List collaborators on your
submission. Also list any sources of help (including online sources) other than the textbook and course staff.

If you are asked to design an algorithm, please provide: (a) the pseudocode or precise description in words
of the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the
running time of your algorithm and (e) justification for your running time analysis.

Submissions. Please submit a PDF file. You may submit a scanned handwritten document, but a typed
submission is preferred. Please assign pages to questions in Gradescope.

1. (30+5 points) Variations on Stable Matching

(a) (10 points) Consider a variant of stable matching in which at every point, either a free college or
a free student can propose. As in the Gale-Shapley algorithm, proposals are done going down in
the preference list, so that a proposer cannot repeat a proposal to the same partner. Show that
this algorithm always terminates with a perfect matching, but not necessarily a stable one.1

(b) (5 points extra credit) Consider colleges A B, C and students 1, 2, 3, with preference lists:
1: A B C
2: B C A
3: C A B

A: 2 3 1
B: 3 1 2
C: 1 2 3

How many of the six perfect matchings are stable? How many stable matchings can be obtained
by a version of part (a) where colleges and students alternate proposing (any party can start)?

(c) (10 points) Now allow proposals also from matched parties. That is, on any turn, any college or
student may propose to the next partner on its preference list if this is better than the current
match (if any), and if the proposal is accepted, both the proposer’s and the acceptor’s former
partner (if any) become free. Does the algorithm always terminate? Will it always produce a
perfect matching? Will it always produce a stable matching? (Hint: a college c might not get a
student s when s already has a better match, but be offered by s later if s becomes unmatched.
Look at n = 3 first).

(d) (10 points) Consider now an algorithm that starts with an arbitrary perfect matching of colleges
to students. As long as the matching is not stable, choose an instability (c, s) and eliminate it, by
matching c with s, and the former partners of c and s with one another. Show that this algorithm
does not always terminate with a stable matching. (Hint: an example with n = 3 suffices).

2. (15 points) Big-O. For each function f(n) below, find (1) the smallest integer constant H such that
f(n) = O(nH), and (2) the largest positive real constant L such that f(n) = Ω(nL). Otherwise, state
that H or L do not exist. All logarithms have base 2. Your answer should consist of: (1) the correct
value of H, (2) a proof that f(n) is O(nH), (3) the correct value of L, (4) a proof that f(n) is Ω(nL).

(a) f(n) = n logn
log(logn)

(b) f(n) =
∑n

k=1

√
k ·
√
n− k

(c) f(n) =
∑n

k=1 k · 2−k

1We are no longer confident that the procedure with only free parties proposing always yields a perfect matching. We have
also failed to find an example where it doesn’t. You will get full credit for exhibiting an example where this procedure fails
to find a stable matching. There may be extra credit available if a student or students resolve the question of whether the
matching from the procedure is always perfect.

1



Homework 1 2

(d) f(n) =
∑n

k=1 k log k

(e) f(n) =
∑n

k=1
n−k
k

3. (15 points) Asymptotics. Let n = k2 for some positive integer k. A Sudoku solution is an n × n
array of numbers, each in the set {1, ..., n}, such that the same number does not occur (1) twice in a
row, (2) twice in a column, and (3) twice in a k × k square “box”, where the whole array is divided
into n such boxes. Given an array as input, we want to determine whether it is a Sudoku solution.

(a) (5 points) Give an Θ(n3) time algorithm to solve this problem.

(b) (5 points) Give an Θ(n2) time algorithm to solve this problem.

(c) (5 points) Give an Ω(n2) lower bound for this problem, by showing that any algorithm that makes
fewer than n2 queries to entries of the input array cannot be correct for all possible inputs.

4. (20 points) Paths of Particular Lengths Let G be an undirected graph, and s and t be arbitrary
vertices of G. We are interested in the possible lengths of (non necessarily) simple paths from s to t.

(a) (10 points). Design an algorithm that determines whether there is a path from s to t with an odd
number of edges. Do the same for an even number of edges. Argue that your algorithm is correct
and analyze its running time.

(b) (10 points). Design an algorithm that determines whether there is a path from s to t whose length
is divisible by 3. Argue that your algorithm is correct and analyze its running time. (Hint: It
might be useful to also consider paths whose length is 1 or 2 modulo 3).

5. (20 points) (Non)overlapping Intervals. We must schedule n jobs, each with a starting time si
and a finishing time fi. We have a set of constraints of the following form, each about a pair of jobs:

• job i finishes before job j starts

• jobs i and j at least partially overlap.

We want to assign each of the n starting and finishing times a distinct integer value from 1 to 2n,
satisfying these constraints. Design an algorithm that produces such an assignment or reports that
this is not possible. Argue that your algorithm is correct and analyze its running time.

6. (0 points). How long did it take you to complete this assignment?


