COMPSCI 311: Introduction to Algorithms
Lecture 6: Greedy Algorithms

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

11 February 2019

Greedy Algorithms

We are moving on to our study of algorithm design techniques:

» Greedy

» Divide-and-conquer

» Dynamic programming
» Network flow

Get a sense of “greedy” algorithms, then characterize them

Interval Scheduling

» In the 80s, you could only watch a given TV show at the time
it was broadcast. What if you wanted to watch multiple shows
and some of the broadcast times overlap?

» You want to watch the highest number of shows. Which subset
of shows do you pick?

10

N
ENEENT ENFEN

» Fine print: assume you like all shows equally, you only have one
TV, and you need to watch shows in their entirety.

Formalizing Interval Scheduling

Let's formalize the problem

» Shows 1,2,...,n
(more generally: requests to be fulfilled with a given resource)

sj: start time of show j
fj, also written f(j): finish time of show j

>

| 4

» Shows i and j are compatible if they don't overlap.

» Set A of shows is compatible if all pairs in A are compatible.
| 4

Set A of shows is optimal
if it is compatible and no other compatible set is larger.

Greedy Algorithms

» Main idea in greedy algorithms is to make one choice at a time
in a “greedy” fashion.
(Choose the thing that looks best, never look back...)

» We will sort shows in some “natural order" and choose shows

one by one if they're compatible with the shows already chosen.

Concretely:

R + set of all shows sorted by some property
A+ {} > selected shows
while R is not empty do
take first show i from R
addito A
delete i and all overlapping shows from R
end while

Clicker Question 1

R + set of all shows sorted by some property
A+ {} > selected shows
while R is not empty do
take first show i from R
add i to A
delete i and all overlapping shows from R
end while

Because the given algorithm includes sorting, we can deduce it is

A. ©(nlogn)
B. O(nlogn)
C. Q(nlogn)
D. None of the above

What's a “natural order" ?

» Start Time: Consider shows in ascending order of s;.

— — — —

(@)

» Shortest Time: Consider shows in ascending order of f; — s;.

(b)

What's a “natural order" ?

> Fewest Conflicts: Let c; be number of shows which overlap
with show j. Consider shows in ascending order of c;.

()

» Finish Time: Consider shows in ascending order of f;.

We'll show that this works!

Analysis

Sorting shows by finish time gives an optimal solution in examples.
Let's try to prove that it will always be optimal.

Let A be the set of shows returned by the algorithm when shows are
sorted by finish time. What do we need to prove?

» A is compatible (obvious property of algorithm)

» A is optimal

We will prove A is optimal by a “greedy stays ahead” argument

Ordering by Finish Time is Optimal: “Greedy Stays Ahead"

» Let A =1iy,...,i; be the intervals selected by the greedy algorithm
» Let O = ji,...,jm be the intervals of some optimal solution O
» Assume both are sorted by finish time

A |--il-o]|---i2---|
0: |---j1---I1---j2---|

[---ik---|
|----jm----1

» Observation: f(i1) < f(j1). The first show in A finishes no later
than the first show in O.

» Claim (“greedy stays ahead”): f(i,) < f(jr) forallr =1,2,....
The rth show in A finishes no later than the rth show in O.

“Greedy Stays Ahead”

» Claim: f(i,) < f(j,) forall r =1,2,...
» Proof by induction on r

> Base case (r = 1): i, is the first choice of the greedy
algorithm, which has the earliest overall finish time, so

flir) < f(r)

Induction Step

» Assume inductively that f(i,—1) < f(jr—1) (r > 2)

» j,. is compatible with j,_1, so s(j;) > f(jr—1)

f(Gr=1) > f(ir—1) by inductive hypothesis

Thus, s(jr) > f(ir—1) and interval j, is in the set of available

intervals when trying to select i,

> Since we greedily select the earliest finish time, f(i,) < f(jr),
completing the inductive step

vy

Clicker Question 2

A: l--ilem||-==i2---| ... |---ik---]

0: |-—-jl-—-l]---j2---I |----jm----1

Recall that k is the number of intervals in the greedy solution and
m is the number of intervals in an optimal solution. What have we
just proven?

f('L'r) S f(]r) for r = 1,2,..,7m
B. f(ir) < f(jr) forr=1,2,...,k
C. The greedy algorithm is optimal.
D

>

. None of the above.

Optimality
A: |--il--||---i2---] ... |---ik---|
0: |---j1---11---j2---| |---jk---1 ... l-=--jm----

Can it be the case that £ < m?

No. Because “greedy stays ahead”, intervals ji41 through j,, would
be compatible with the greedy solution, and the greedy algorithm
would not terminate until adding them.

Running Time?

R + set of all shows sorted by finishing time
Ae{)
while R is not empty do
take first show ¢ from R
add i to A
delete 7 and all overlapping shows from R > O(n)?
end while

Can we make loop better than n2?

Running Time?

R < set of all shows sorted by finishing time
A+ {}, end=0 > last scheduled time
for show i from 1 to n do
if s; > end then
add i to A; end = f; > O(1)
end if
end for

O(nlogn) — dominated by sort

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don't look back.

Learning goals:

Greedy

Formulate problem

Design algorithm

Prove correctness v
Analyze running time

Specific algorithms Dijkstra, MST

Focus is on proof techniques. Next time: another proof technique.

Problem 2: Interval Partitioning

» Suppose you are in charge of UMass classrooms.

» There are n classes to be scheduled on a Monday where class j
starts at time s; and finishes at time f;

» Your goal is to schedule all the classes such that the minimum
number of classrooms get used throughout the day.
Obviously two classes that overlap can't use the same room.

3 5 7 10
2 7
2 3 4 7
1 3 6 7

How Many Classrooms Are Needed?

» Consider all points on the timeline
» Count how many classes run at that time

» Maximum number is called the depth of the set of intervals

3 5 7 10
2 7
2 3 4 7
1 3 6 7

> It's a lower bound on number of rooms needed (why?)

» s this number sufficient ?

A Greedy Approach

» Process classes in order of start time
» For each class, either allocate a new room, or reuse an already
allocated room if the last class in that room has completed

2 7
2 3 5 6 7
1 3 4 7 10

Interval Partitioning Algorithm

sort the intervals by starting time
for j = 1tondo
for each ¢ < j overlapping interval j do
exclude label of I; for scheduling I;
end for
if there is some nonexcluded label in 1 .. d then
label I; with that label
end if
end for

Clicker Question 3

If the class with the next starting time is compatible with several
rooms, it should be scheduled

A. In a room with the fewest classes scheduled so far
B. In the room with the latest finishing time
C. In the room with the earliest finishing time

D. Does not matter

Correctness of Interval Partitioning

Claim: Every resource will be assigned a label.
Proof? By contradiction.

» Suppose it uses more than d rooms

» There are d classes running when the d + 15 room is allocated.

» This set of d + 1 classes overlap, therefore the depth is greater
than d.

Claim: No two resources are assigned the same label.

Proof? Assume two intervals overlap, I; starting before I
Label of I; is excluded when scheduling I

Corollary: the greedy algorithm uses exactly d rooms, and is
therefore optimal.

Complexity of Interval Partitioning
Keep finishing time for each label
sort the intervals by starting time
let end[(] =0 forall £inl.. d
for j =1 ton do
for ¢ =1 to d do
if s; > end[(] then
assign I; to label /; break;
end if
end for
if £ > d then return "unschedulable"
end if
end for

Complexity? O(nlogn + nd). Can we do better ?

> keep a priority queue of last finishing times for each label
» find min in O(1), update in O(logd), loop becomes O(nlogd)

Since d < n, we have O(nlogn + nlogd) = O(nlogn)

