
COMPSCI 311: Introduction to Algorithms
Lecture 6: Greedy Algorithms

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

11 February 2019

Greedy Algorithms

We are moving on to our study of algorithm design techniques:

I Greedy
I Divide-and-conquer
I Dynamic programming
I Network flow

Get a sense of “greedy” algorithms, then characterize them

Interval Scheduling

I In the 80s, you could only watch a given TV show at the time
it was broadcast. What if you wanted to watch multiple shows
and some of the broadcast times overlap?

I You want to watch the highest number of shows. Which subset
of shows do you pick?

1 4
2 3
2 7

4 7
5 7

3 6 7 10

I Fine print: assume you like all shows equally, you only have one
TV, and you need to watch shows in their entirety.

Formalizing Interval Scheduling

Let’s formalize the problem
I Shows 1, 2, . . . , n

(more generally: requests to be fulfilled with a given resource)
I sj : start time of show j

I fj , also written f(j): finish time of show j

I Shows i and j are compatible if they don’t overlap.
I Set A of shows is compatible if all pairs in A are compatible.
I Set A of shows is optimal

if it is compatible and no other compatible set is larger.

Greedy Algorithms

I Main idea in greedy algorithms is to make one choice at a time
in a “greedy” fashion.
(Choose the thing that looks best, never look back. . .)

I We will sort shows in some “natural order" and choose shows
one by one if they’re compatible with the shows already chosen.
Concretely:

R← set of all shows sorted by some property
A← {} . selected shows
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R

end while

Clicker Question 1

R← set of all shows sorted by some property
A← {} . selected shows
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R

end while

Because the given algorithm includes sorting, we can deduce it is

A. Θ(n log n)
B. O(n log n)
C. Ω(n log n)
D. None of the above

What’s a “natural order" ?

I Start Time: Consider shows in ascending order of sj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

I Shortest Time: Consider shows in ascending order of fj − sj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

What’s a “natural order" ?

I Fewest Conflicts: Let cj be number of shows which overlap
with show j. Consider shows in ascending order of cj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

I Finish Time: Consider shows in ascending order of fj .

We’ll show that this works!

Analysis

Sorting shows by finish time gives an optimal solution in examples.
Let’s try to prove that it will always be optimal.

Let A be the set of shows returned by the algorithm when shows are
sorted by finish time. What do we need to prove?
I A is compatible (obvious property of algorithm)
I A is optimal

We will prove A is optimal by a “greedy stays ahead” argument

Ordering by Finish Time is Optimal: “Greedy Stays Ahead”

I Let A = i1, . . . , ik be the intervals selected by the greedy algorithm
I Let O = j1, . . . , jm be the intervals of some optimal solution O

I Assume both are sorted by finish time
A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

I Observation: f(i1) ≤ f(j1). The first show in A finishes no later
than the first show in O.

I Claim (“greedy stays ahead”): f(ir) ≤ f(jr) for all r = 1, 2,
The rth show in A finishes no later than the rth show in O.

“Greedy Stays Ahead”

I Claim: f(ir) ≤ f(jr) for all r = 1, 2, . . .

I Proof by induction on r

I Base case (r = 1): ir is the first choice of the greedy
algorithm, which has the earliest overall finish time, so
f(ir) ≤ f(jr)

Induction Step

I Assume inductively that f(ir−1) ≤ f(jr−1) (r ≥ 2)

I jr is compatible with jr−1, so s(jr) ≥ f(jr−1)
I f(jr−1) ≥ f(ir−1) by inductive hypothesis
I Thus, s(jr) ≥ f(ir−1) and interval jr is in the set of available

intervals when trying to select ir

I Since we greedily select the earliest finish time, f(ir) ≤ f(jr),
completing the inductive step

Clicker Question 2

A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

Recall that k is the number of intervals in the greedy solution and
m is the number of intervals in an optimal solution. What have we
just proven?

A. f(ir) ≤ f(jr) for r = 1, 2, . . . , m

B. f(ir) ≤ f(jr) for r = 1, 2, . . . , k

C. The greedy algorithm is optimal.

D. None of the above.

Optimality

A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| |---jk---| ... |----jm----|

Can it be the case that k < m?

No. Because “greedy stays ahead”, intervals jk+1 through jm would
be compatible with the greedy solution, and the greedy algorithm
would not terminate until adding them.

Running Time?

R← set of all shows sorted by finishing time
A← {}
while R is not empty do

take first show i from R
add i to A
delete i and all overlapping shows from R . O(n)?

end while

Can we make loop better than n2?

Running Time?

R← set of all shows sorted by finishing time
A← {}, end = 0 . last scheduled time
for show i from 1 to n do

if si ≥ end then
add i to A; end = fi . O(1)

end if
end for

Θ(n log n) — dominated by sort

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Learning goals:

Greedy
Formulate problem
Design algorithm
Prove correctness X
Analyze running time
Specific algorithms Dijkstra, MST

Focus is on proof techniques. Next time: another proof technique.

Problem 2: Interval Partitioning

I Suppose you are in charge of UMass classrooms.
I There are n classes to be scheduled on a Monday where class j

starts at time sj and finishes at time fj

I Your goal is to schedule all the classes such that the minimum
number of classrooms get used throughout the day.
Obviously two classes that overlap can’t use the same room.

1 3
2 3
2 7

3 5

4 7
6 7

7 10

How Many Classrooms Are Needed?

I Consider all points on the timeline
I Count how many classes run at that time
I Maximum number is called the depth of the set of intervals

1 3
2 3
2 7

3 5

4 7
6 7

7 10

I It’s a lower bound on number of rooms needed (why?)
I Is this number sufficient ?

A Greedy Approach

I Process classes in order of start time
I For each class, either allocate a new room, or reuse an already

allocated room if the last class in that room has completed

1 3

2 3

2 7

3 5

4 7

6 7

7 10

Interval Partitioning Algorithm

sort the intervals by starting time
for j = 1 to n do

for each i < j overlapping interval j do
exclude label of Ii for scheduling Ij

end for
if there is some nonexcluded label in 1 .. d then

label Ij with that label
end if

end for

Clicker Question 3

If the class with the next starting time is compatible with several
rooms, it should be scheduled

A. In a room with the fewest classes scheduled so far

B. In the room with the latest finishing time

C. In the room with the earliest finishing time

D. Does not matter

Correctness of Interval Partitioning

Claim: Every resource will be assigned a label.

Proof? By contradiction.
I Suppose it uses more than d rooms
I There are d classes running when the d + 1st room is allocated.
I This set of d + 1 classes overlap, therefore the depth is greater

than d.

Claim: No two resources are assigned the same label.

Proof? Assume two intervals overlap, I1 starting before I2
Label of I1 is excluded when scheduling I2

Corollary: the greedy algorithm uses exactly d rooms, and is
therefore optimal.

Complexity of Interval Partitioning
Keep finishing time for each label
sort the intervals by starting time
let end[`] = 0 for all ` in 1 .. d
for j = 1 to n do

for ` = 1 to d do
if si ≥ end[`] then

assign Ij to label `; break;
end if

end for
if ` > d then return "unschedulable"
end if

end for

Complexity? O(n log n + nd). Can we do better ?
I keep a priority queue of last finishing times for each label
I find min in O(1), update in O(log d), loop becomes O(n log d)

Since d ≤ n, we have O(n log n + n log d) = O(n log n)

