
COMPSCI 311 Introduction to Algorithms
Lecture 5: Graphs: Bipartite, Directed, Topological Sorting

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

6 February 2019

Review and Outlook

I Graph traversal by BFS/DFS
I Different versions of general exploration strategy
I O(m + n) time
I Produce trees with useful properties (for other problems)
I Basic algorithmic primitive — used in many other algorithms

path from s to t, connected components

I Bipartite testing

I Directed graphs
I Traversal
I Strong connectivity
I Topological sorting

Bipartite Graphs

Definition Graph G = (V, E) is bipartite if V can be partitioned
into sets X, Y such that every edge has one end in X and one in Y .

Can color nodes red/blue s.t. no edges between nodes of same color.

Examples
I Bipartite: student-college graph in stable matching
I Bipartite: client-server connections
I Not bipartite: “odd cycle” (cycle with odd # of nodes)
I Not bipartite: any graph containing odd cycle

Claim (easy): If G contains an odd cycle, it is not bipartite.

Bipartite Testing

Question Given G = (V, E), is G bipartite?

Algorithm? Idea: run BFS from any node s

I L0 = red
I L1 = blue
I L2 = red
I . . .
I Even layers red, odd layers blue

What could go wrong? Edge between two nodes at same layer.

Bipartite Testing: Algorithm

Run BFS from any node s
if there is an edge between two nodes in same layer then

Output "not bipartite"
else

X = even layers
Y = odd layers

end if

Correctness? Recall: all edges between same or adjacent layers.

1. If there are no edges between nodes in the same layer, then G
is bipartite.

2. If there is an edge between two nodes in the same layer, G has
an odd cycle and is not bipartite. Proof?

Bipartite Testing: Proof

I Let T be BFS tree of G and suppose (x, y) is an edge between
two nodes in the layer j

I Let z ∈ Li be the least common ancestor of x and y
(Useful in proofs: take least/greatest item with some property)
I Pzx = path from z to x in T
I Pyz = path from z to y in T
I Path that follows Pzx then edge (x, y) then Pyz is a cycle of

length 2(j − i) + 1, which is odd

I Therefore G is not bipartite.



Directed Graphs

G = (V, E)
I (u, v) ∈ E is a directed edge
I u points to v

Examples
I Facebook: undirected
I Twitter: directed
I Web: directed
I Road network: directed (if one-way roads)

Directed Graph Definitions

Most definitions extend naturally to directed graphs by mapping the
word “edge” to “directed edge”
I Directed path: sequence P = v1, v2, . . . , vk−1, vk such that

each consecutive pair vi, vi+1 is joined by a directed edge in G.
A v1 → vk path.

I Directed cycle: directed path with v1 = vk

I Connected? Connected component? More subtle, because
now there can be a path from s to t but not vice versa.

Directed Graph Traversal

Reachability. Find all nodes reachable from some node s.

s-t shortest path.
What is the length of the shortest directed path from s to t?

Algorithm? BFS naturally extends to directed graphs.
Add v to Li+1 if there is a directed edge from Li and v is not
already discovered.

BFS in Directed Graph

BFS/DFS naturally extend to directed graphs.
BFS(s):

mark s as "discovered"
L[0]← {s}, i← 0
while L[i] is not empty do

L[i + 1]← empty list
for all nodes v in L[i] do

for all edges (v, w) leaving v do
if w is not marked "discovered" then

mark w as "discovered"
put w in L[i + 1]

end if
end for

end for
i← i + 1

end while

Variations of Traversal

Traversal from s finds nodes t with path s t
There may be no path t s

Find all nodes v from which we can reach t? (v → t path)?
BFS following edges in reverse direction

Useful to keep adjacency lists for both outgoing and incoming edges.

Clicker Question 1

Suppose G is a directed path on n vertices and we call BFS
repeatedly starting from any unexplored vertex until all nodes are
explored. What is the maximum number of times BFS may be
called?

A. 1
B. n− 1
C. n
D. m



Differences in Traversing Directed Graphs

Recall: Tree = undirected, connected, acyclic graph
⇒ finding a non-tree edge (in BFS or DFS) = cycle
non-tree edge: reaching an already discovered node

(except for node’s parent)

No longer true in directed graph:
1

2 3

Edges in Directed Graph BFS

Paths are directed, no need to check for parent.

With respect to BFS tree, graph edges can go
I one level down (tree or non-tree edge)

why not > 1 ? same reason, would add to next level
I same level (non-tree)
I any levels up (non-tree)

DFS in Directed Graphs

1

2 3

4 5 8

6

7
1

2

3

5

6

4

3→ 1 is a back edge (to ancestor)
2→ 5 is a forward edge (to descendant)
4→ 5 is a cross edge (node in another subtree)

Clicker Question 2

Which of these types of edges must close a cycle ?

A: back edges

B: forward edges

C: cross edges

D: all of the above

Identifying Edges in DFS
To detect the various edges, we track:
I start (“discovered”) / end (“explored”) of neighbor iteration
I order in which nodes are reached (running counter)

count = 0
DFS(u)

num[u] = ++count
mark u as "discovered"
for all edges (u, v) do

if v is "unseen" then
call DFS(v) recursively . tree edge

else if v is "discovered" then . back edge
else . v is "explored"

if num[v] > num[u] then . forward edge
else . num[v] < num[u]: cross edge
end if

end if
end for
mark u as "explored"

Directed Graph Connectivity
13.3. THE WEB AS A DIRECTED GRAPH 387

I'm a student 
at Univ. of X

Company Z's 
home page

Our 
Founders

Press 
Releases

Contact Us

Univ. of X

Classes

Networks

Networks 
class blog

Blog post about 
college rankings

I teach at 
Univ. of X

USNews: 
College 

Rankings

USNews: 
Featured 
Colleges

Blog post 
about 

Company Z

I'm a applying to 
college

My song 
lyrics

Figure 13.6: A directed graph with its strongly connected components identified.

Strongly connected graph.
Directed path between any
two nodes.

Strongly connected
component (SCC).
Maximal subset of nodes
with directed path between
any two.

SCCs can be found in time
O(m + n). (Tarjan, 1972)



Clicker Question 3

Consider the graph G′ whose nodes are SCCs and there is an edge
from C to D if any node in C has an edge to D.
Which of the following is always true?

A. G′ is strongly connected
B. G′ has a cycle
C. G′ has at least n/2 nodes
D. G′ is a DAG

Directed Acyclic Graphs
Definition
A directed acyclic graph (DAG) is a directed graph with no cycles.

Models dependencies, e.g. course prerequisites:

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Math: (strict) partial order (irreflexive, antisymmetric, transitive)

Topological Sorting

Definition A topological ordering of a directed graph is an ordering
of the nodes such that all edges go “forward” in the ordering
I Label nodes v1, v2, . . . , vn such that
I For all edges (vi, vj) we have i < j
I A way to order the classes so all prerequisites are satisfied

Q: Is a topological ordering possible for any graph?

Topological Sorting

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Exercise

1. Find a topological ordering.
2. Devise an algorithm to find a topological ordering.

Topological Ordering

M132 C187 C220 C240 C250 C311 C383

Claim If G has a topological ordering, then G is a DAG.

Topological Sorting

Problem Given DAG G, compute a topological ordering for G.

topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

end while

Running time? O(n2 + m) easy. O(m + n) more clever



Topological Sorting Analysis

I In a DAG, there is always a node v with no incoming edges.
Try to prove. (contradiction, pigeonhole principle)

I Removing a node v from a DAG, produces a new DAG.

I Any node with no incoming edges can be first in topological
ordering.

Theorem: G is a DAG if and only if G has a topological ordering.

Topological Sorting in O(m + n)

topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

end while

Optimization: don’t search every time for nodes w/o incoming edges
I Keep and update incoming edge count for each node

(setup in O(m + n), each update constant-time)
I Keep set of nodes of nodes with incoming edges; add node

when its count becomes zero
I Running time: O(m + n)


