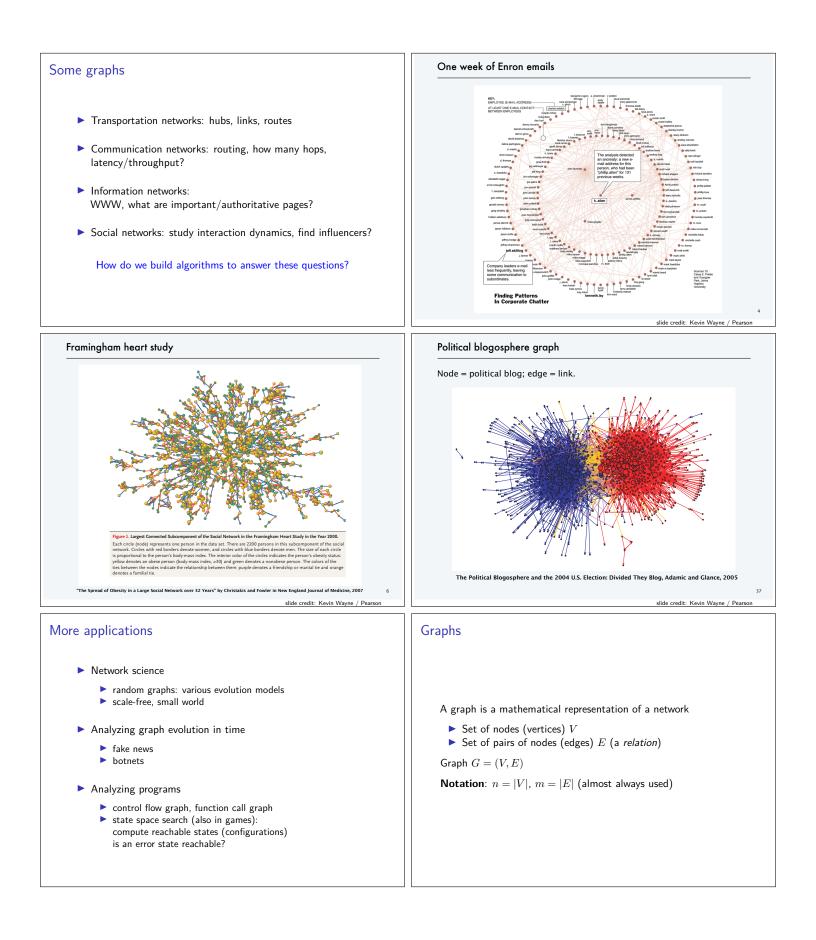
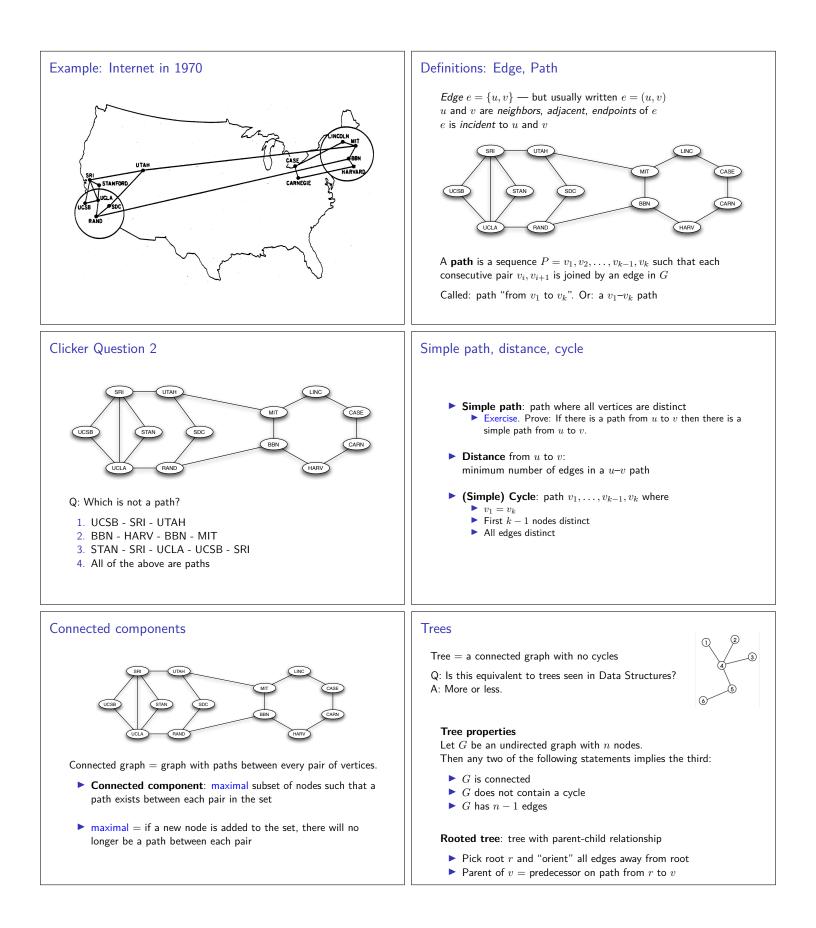
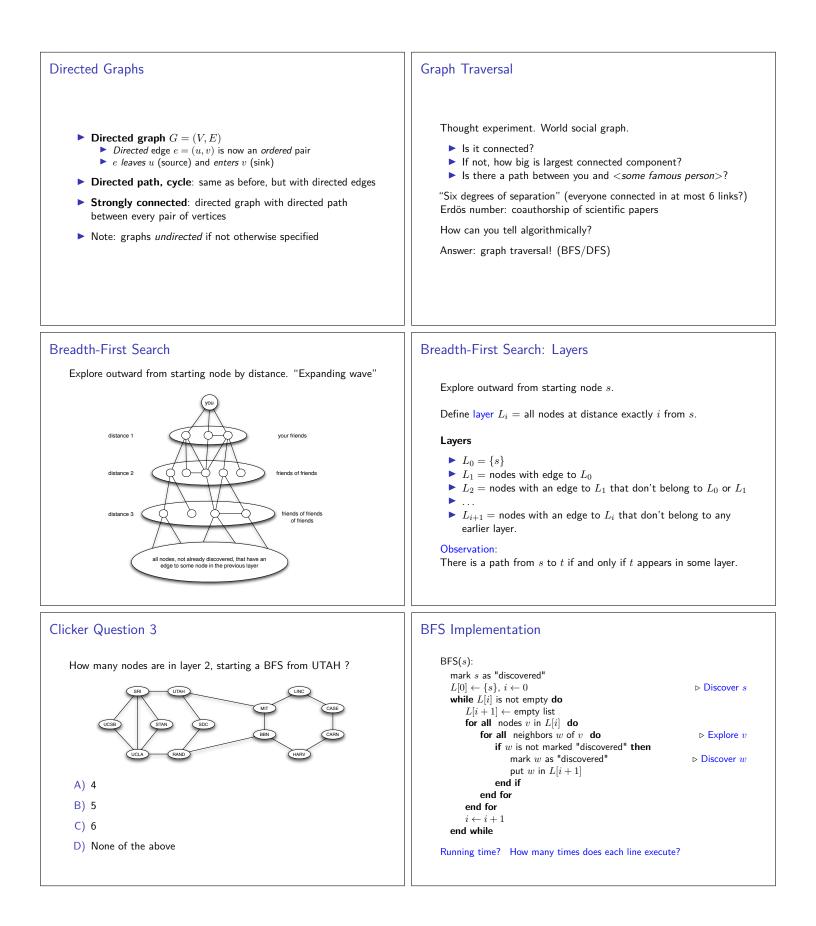
Big-⊖
Definition: the function $T(n)$ is $\Theta(f(n))$ if there exist positive constants c_1 , c_2 and n_0 such that $c_1f(n) \leq T(n) \leq c_2f(n)$ for all $n \geq n_0$
f is an asymptotically tight bound of T
Equivalent Definition : the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$.
Example. $f(n) = 32n^2 + 17n + 1$ $f(n) \text{ is } \Theta(n^2)$ $f(n) \text{ is neither } \Theta(n) \text{ nor } \Theta(n^3)$
Big-⊖ example
How do we correctly compare the running time of these algorithms? Algorithm bar Algorithm foo for $i = 1$ to n do for $j = 1$ to n do for $j = 1$ to n do for $j = 1$ to n do for $k = 1$ to n do do something end for end for end for Answer: foo is $\Theta(n^2)$ and bar is $\Theta(n^3)$. They do not have the same asymptotic running time.
Running Time Analysis
 Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices? Mathematical: describes the <i>algorithm</i>. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive. Worst-case: just works. ("average case" appealing, but hard to analyze) Function of input size: allows predictions. What will happen on a new input?

Efficiency		Polynomial Time
When is an algorithm efficient? Stable Matching Brute force: $\Omega(n!)$ Propose-and-Reject?: $O(n^2)$ We must have done something clever Question: Is it $\Omega(n^2)$?		Definition: an algorithm runs in polynomial time if its running time is $O(n^d)$ for some constant d • Examples These are polynomial time: $f_1(n) = n$ $f_2(n) = 4n + 100$ $f_3(n) = n \log(n) + 2n + 20$ $f_4(n) = 0.01n^2$ $f_5(n) = n^2$ $f_5(n) = n^2$ $f_6(n) = 20n^2 + 2n + 3$ • Not polynomial time: $f_7(n) = 2^n$ $f_8(n) = 3^n$ $f_9(n) = n!$
Why Polynomial Tim	e ?	Exponential time
 Why is this a good definition of efficiency? Matches practice: almost all practically efficient algorithms have this property. Usually distinguishes a clever algorithm from a "brute force" approach. Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists. 		An algorithm is <i>exponential time</i> if it is $O(2^{n^k})$ for some $k > 0$ Useful fact: (Stirling's approximation) $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (ratio tends to 1) Exercise: What can you claim from here for big-O (and later big- Θ)?
Review: Asymptotics		Graphs are everywhere Masselitates Bay Transportation Authority Masselitates Bay Transportation Authority Ma
Property	Definition / terminology	Warang to Robert Charles The C
f(n) is $O(g(n))$	$\exists c, n_0 \text{ s.t. } f(n) \leq cg(n) \text{ for all } n \geq n_0$ g is an asymptotic upper bound on f	
$f(n) \text{ is } \Omega(g(n))$	$ \exists c, n_0 \text{ s.t. } f(n) \ge cg(n) \text{ for all } n \ge n_0 $ Equivalently: $g(n)$ is $O(f(n))$ g is an asymptotic lower bound on f	
$f(n)$ is $\Theta(g(n))$	$f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$ g is an asymptotically tight bound on f	Company
		Legend







BFS Tree **BFS Running Time** BFS(s): We can use BFS to make a tree. (blue: "tree edges", dashed: mark s as "discovered" ⊳ 1 "non-tree edges") $L[0] \gets \{s\}, \ i \gets 0$ $\triangleright 1$ while L[i] is not empty do MIT $L[i+1] \gets \mathsf{empty} \ \mathsf{list}$ $\triangleright \leq n$ for all nodes v in L[i] do $\triangleright n$ for all neighbors w of v do $\triangleright 2m$ UTAH BBN LINC if w is not marked "discovered" then $\triangleright 2m$ mark \boldsymbol{w} as "discovered" $\triangleright n$ put w in L[i+1] $\triangleright n$ end if HARV SDC SR RANE end for end for $i \leftarrow i + 1$ $\triangleright \leq n$ end while STAN UCSB Running time: O(m+n). Hidden assumption: can iterate over neighbors of v efficiently... OK pending data structure. **BFS** Tree **BFS** Tree BFS(s): MIT mark s as "discovered" $L[0] \leftarrow \{s\}, i \leftarrow 0$ UTAH BBN $T \gets \mathsf{empty}$ while L[i] is not empty do $L[i+1] \leftarrow \text{empty list}$ for all nodes v in L[i] do (SDC for all neighbors w of v do if w is not marked "discovered" then mark w as "discovered" STAN)-UCLA put w in L[i+1]put (v, w) in Tend if end for **Claim**: let T be the tree discovered by BFS on graph G = (V, E), end for and let $(\boldsymbol{x},\boldsymbol{y})$ be any edge of G. Then the layer of \boldsymbol{x} and \boldsymbol{y} in T $i \leftarrow i + 1$ differ by at most 1. end while BFS and non-tree edges Exploring all Connected Components How to explore entire graph even if it is disconnected? **Claim**: let T be the tree discovered by BFS on graph G = (V, E), and let $(\boldsymbol{x},\boldsymbol{y})$ be any edge of G. Then the layer of \boldsymbol{x} and \boldsymbol{y} in T $\ensuremath{\textbf{while}}$ there is some unexplored node $s~\ensuremath{\textbf{do}}$ differ by at most 1. BFS(s) \triangleright Run BFS starting from *s*. Extract connected component containing \boldsymbol{s} Proof end while \blacktriangleright Let (x, y) be an edge • Assume x is discovered first and placed in L_i Usually OK to assume graph is connected. • Then $y \in L_j$ for $j \ge i$ • When neighbors of x are explored, y is either already in L_i , or State if you are doing so and why it does not trivialize the problem. is discovered and added to L_{i+1} Running time? Does it change?