COMPSCI 311 Introduction to Algorithms

Lecture 3: Asymptotic Complexity
Graphs and Breadth-First Search

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

30 January 2019

Big-©

Definition: the function T'(n) is ©(f(n)) if there exist positive
constants ¢, ¢o and ng such that
crf(n) <T(n) < caf(n) for all n > ny

f is an asymptotically tight bound of T’

Equivalent Definition: the function T'(n) is ©(f(n)) if it is both

O(f(n)) and Q(f(n)).

Example. f(n) =32n> +17n +1

> f(n)is ©(n?)
» f(n) is neither ©(n) nor O(n3)

Clicker Question 1

Which of the following implies that f(n) is ©(g(n)):

A. f(n)is ©(g(n)) if limp_e0 % = ¢ for some constant
0<c<oo

B. f(n)is ©(g(n)) if there exist constants ¢1,c2 > 0 such that
c1-g(n) < f(n) < ca- g(n) for infinitely many n

C. Both A and B
D. Neither A nor B

Big-© example

How do we correctly compare the running time of these algorithms?

Algorithm bar
Algorithm foo for i=1ton do
for j=1tondo
for k=1ton do

do something else..

for i=1ton do
for j=1ton do
do something...

end for end for
end for end for
end for

Answer: foo is ©(n?) and bar is ©(n?).
They do not have the same asymptotic running time.

Additivity Revisited

Suppose f and g are two (non-negative) functions and f is O(g)

Old version: Then f + g is O(g)
New version: Then f + g is ©(g)

Example:
\ni-&— 42n + nlogn is O(n?)

g f

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?

» Mathematical: describes the algorithm.
Avoids hard-to-control experimental factors (CPU, programming
language, quality of implementation), while still being predictive.

» Worst-case: just works.
(“average case” appealing, but hard to analyze)

» Function of input size: allows predictions.
What will happen on a new input?

Efficiency

When is an algorithm efficient?

Stable Matching Brute force: Q(n!)
Propose-and-Reject?: O(n?)
We must have done something clever

Question: Is it Q(n?) ?

Polynomial Time

Definition: an algorithm runs in polynomial time if its running time
is O(n?) for some constant d

» Examples
These are polynomial time:
?EZ; - ZnJr 100 Not polynomial time:
2(n) = _on
f3(n) = nlog(n) + 2n + 20 frln) = 2n
fa(n) = 0.01n2 fs(n) = 3,
f5(n) = n? foln) =n!
fo(n) = 20n> +2n +3

Why Polynomial Time ?

Why is this a good definition of efficiency?

» Matches practice: almost all practically efficient algorithms
have this property.

» Usually distinguishes a clever algorithm from a “brute force"”
approach.

» Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.

Exponential time

An algorithm is exponential time if it is O(2"k) for some k£ > 0

Useful fact: (Stirling’s approximation)

n n
n! ~/2mn (7> (ratio tends to 1)
€

Exercise: What can you claim from here for big-O (and later big-©)?

Review: Asymptotics

Property Definition / terminology

f(n)is O(g(n))

Je,no s.t. f(n) < eg(n) for all n > ng
g is an asymptotic upper bound on f

Je,ng s.t. f(n) > eg(n) for all n > ng
Equivalently: g(n) is O(f(n))
g is an asymptotic lower bound on f

f(n) is O(g(n)) and f(n) is Q(g(n))
g is an asymptotically tight bound on f

f(n) is Q(g(n))

f(n)is ©(g(n))

Graphs are everywhere

Massachusetts Bay Transportation Authority
Commuter Rail Map

s, 2 -
et RS
%ﬁi";}%% j:‘w,%,,, f&fg"wf};‘:\f‘%:' x%\

*, P X o %, .
L TN,

o %
" e

Some graphs

» Transportation networks: hubs, links, routes

» Communication networks: routing, how many hops,
latency/throughput?

» Information networks:

WWW, what are important/authoritative pages?

» Social networks: study interaction dynamics, find influencers?

How do we build algorithms to answer these questions?

One week of Enron emails

EMPLOYEE € MAL ADDRESS)vvy m;—_w—l-r | Lf’.ﬁ-l e
AT LEAST ONE EMAIL CONTACT-+ [Giiecain] S50 o~ ey
Pty]| e omu,
ey)
anmrte ® O sy
Aoy * S N @ sechane pans.
i | 55 [T e
sven o Rt -2 O - @ saytan
sy O omee ®) X”:m.:_._ Np dutricoman
o R4 gt siorey @ . g Do @ s shackieson.
g e omeions osoroea
domiosum g, [y ! Qs
s : ey -
® L g ‘mail address for this. @ steven bean »
asnaierg L s Fminersa @ | person, who had been o i @ty
srig || e “phil.allen” for 131 P T
[P ot Slosoinre guawirny
aimtncping w2 @b P
Laanseol g A I toopin o manion
¢ . pe—
e, pri— [aten] et e @ omsvomss
sdnencc @ g [Yee— @
Fogwhaer @ "‘"‘"“".. ® wasupendat Ompu
[Tt oo @ mntacamron
iy ol © rvauny Orrmree’ | quiom
s 6 X i B P YR
Jsnsote @ yr® > © mcntaroiay
PR Sy S ©
oty sharkman @ martn e ® . @ rotert benson. ®m tomey
kg & Pt s o
oy . - © kot
. ERRRRAE 3o
o e U et
Gompany leaders e-mail ¥ o
fosroquenty oavrg (2700 Piirvvmunl soamm
some communication to pres Pty v P
subordinates. Tonron® o ’ . ® i 0 Yorser
et o
i T 21 P T M
Tovmart | B | oty
Finding Patterns kenneth.lay "

In Corporate Chatter

Framingham heart study

slide credit: Kevin Wayne

Pearson

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index, The inerior color of the circles indicates the person's obesity status
yellow denotes an obese person (body-mass index, 230) and green denotes a nonobese person. The colors of the

ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familia ti.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

slide credit: Kevin Wayne / Pearson

Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

slide credit: Kevin Wayne / Pearson

More applications

» Network science

» random graphs: various evolution models
» scale-free, small world

» Analyzing graph evolution in time

> fake news
> botnets

» Analyzing programs

» control flow graph, function call graph

> state space search (also in games):
compute reachable states (configurations)
is an error state reachable?

Graphs

A graph is a mathematical representation of a network

> Set of nodes (vertices) V'
> Set of pairs of nodes (edges) E (a relation)

Graph G = (V,E)

Notation: n = |V|, m = |E| (almost always used)

Example: Internet in 1970

Definitions: Edge, Path

Edge ¢ = {u,v} — but usually written e = (u,v)
u and v are neighbors, adjacent, endpoints of ¢
e is incident to u and v

A path is a sequence P = vy, v, ...,v5_1, v such that each
consecutive pair v;, v;4+1 is joined by an edge in G

Called: path “from vy to v". Or: a vi—vy path

Clicker Question 2

Q: Which is not a path?

1. UCSB - SRI - UTAH

2. BBN - HARV - BBN - MIT

3. STAN - SRI - UCLA - UCSB - SRI
4. All of the above are paths

Simple path, distance, cycle

» Simple path: path where all vertices are distinct
> Exercise. Prove: If there is a path from u to v then there is a
simple path from u to v.

» Distance from u to v:
minimum number of edges in a u—v path

> (Simple) Cycle: path vy, ..., vx_1, v where
> v =g
> First k — 1 nodes distinct
> All edges distinct

Connected components

Connected graph = graph with paths between every pair of vertices.

» Connected component: maximal subset of nodes such that a
path exists between each pair in the set

» maximal = if a new node is added to the set, there will no
longer be a path between each pair

Trees

Tree = a connected graph with no cycles

Q: Is this equivalent to trees seen in Data Structures?
A: More or less.

Tree properties
Let G be an undirected graph with n nodes.
Then any two of the following statements implies the third:

» G is connected
» G does not contain a cycle
» G has n — 1 edges

Rooted tree: tree with parent-child relationship

» Pick root r and “orient” all edges away from root
» Parent of v = predecessor on path from r to v

Directed Graphs

» Directed graph G = (V. E)
> Directed edge e = (u,v) is now an ordered pair
> ¢ leaves u (source) and enters v (sink)

» Directed path, cycle: same as before, but with directed edges

» Strongly connected: directed graph with directed path
between every pair of vertices

» Note: graphs undirected if not otherwise specified

Graph Traversal

Thought experiment. World social graph.

» |s it connected?
» If not, how big is largest connected component?
> Is there a path between you and <some famous person>?

“Six degrees of separation” (everyone connected in at most 6 links?)
Erdés number: coauthorship of scientific papers

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting node by distance. “Expanding wave”

distance 1 your friends

distance 2 friends of friends

distance 3 friends of friends

of friends

all nodes, not already discovered, that have an
edge to some node in the previous layer

Breadth-First Search: Layers

Explore outward from starting node s.
Define layer L; = all nodes at distance exactly i from s.

Layers

> Lo={s}

» [= nodes with edge to Ly

» [= nodes with an edge to L; that don't belong to Ly or L

|

» [;.1 = nodes with an edge to L; that don't belong to any
earlier layer.

Observation:
There is a path from s to ¢ if and only if ¢ appears in some layer.

Clicker Question 3

How many nodes are in layer 2, starting a BFS from UTAH ?

one of the above

BFS Implementation

BFS(s):

mark s as "discovered"

L[0] + {s},i+ 0 > Discover s
while L[i] is not empty do
L[i 4 1] < empty list
for all nodes v in L[i] do
for all neighbors w of v do > Explore v

if w is not marked "discovered" then
mark w as "discovered"
put w in L[z + 1]
end if
end for
end for
i—i+1
end while

> Discover w

Running time? How many times does each line execute?

BFS Running Time

BFS(s):
mark s as "discovered" >1
L[0] + {s}, i+ 0 >1
while L[] is not empty do
L[i 4 1] < empty list ><n
for all nodes v in L[i] do >n
for all neighbors w of v do > 2m
if w is not marked "discovered" then > 2m
mark w as "discovered" >n
put w in L[z + 1] >n
end if
end for
end for
i—i+1 ><n
end while

Running time: O(m + n). Hidden assumption: can iterate over
neighbors of v efficiently... OK pending data structure.

BFS Tree

We can use BFS to make a tree. (blue: “tree edges”, dashed:
“non-tree edges”)

BFS Tree

BFS(s):
mark s as "discovered"
L0] « {s}, i+ 0
T < empty
while L[i] is not empty do
Lji + 1] < empty list
for all nodes v in L[i] do
for all neighbors w of v do
if w is not marked "discovered" then
mark w as "discovered"
put w in L[i + 1]
put (v,w) in T
end if
end for
end for
i—i+1
end while

BFS Tree

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G. Then the layer of x and y in T
differ by at most 1.

BFS and non-tree edges

Claim: let T' be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G. Then the layer of z and y in T’
differ by at most 1.

Proof

> Let (x,y) be an edge

» Assume z is discovered first and placed in L;

» Theny e L; forj >

» When neighbors of z are explored, y is either already in L;, or
is discovered and added to ;41

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do

BFS(s) > Run BFS starting from s.
Extract connected component containing s
end while

Usually OK to assume graph is connected.
State if you are doing so and why it does not trivialize the problem.

Running time? Does it change?

