	Randomization + Approximation: $MAX-3-SAT$
COMPSCI 311: Introduction to Algorithms Lecture 26: Randomized Algorithms. Review Marius Minea University of Massachusetts Amherst	3-SAT: Given set of clauses, is there a satisfying truth assignment? What if we can't satisfy all clauses (constraints)? Do next best MAX-3-SAT. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible (Note: three <i>distinct</i> variables per clause)
slides credit: Dan Sheldon 1 May 2019	$C_{1} = x_{2} \lor \bar{x}_{3} \lor \bar{x}_{4}$ $C_{2} = x_{2} \lor x_{3} \lor \bar{x}_{4}$ $C_{3} = \bar{x}_{1} \lor x_{2} \lor x_{4}$ $C_{4} = \bar{x}_{1} \lor \bar{x}_{2} \lor x_{3}$ $C_{5} = x_{1} \lor \bar{x}_{2} \lor \bar{x}_{4}$
How hard is MAX-3-SAT ?	Randomized MAX-3-SAT
Reformulate as decision problem: Given formula ϕ and $k \in \mathbf{N}$, is there an assignment satisfying $\geq k$ clauses? Is this NP-complete? Yes! Taking k = number of clauses, we obtain 3-SAT! medskip Simple idea : Flip a coin for each $x_i \implies$ set to 1 or 0 (set each variable true with probability $\frac{1}{2}$, independently) How many clauses do we expect to satisfy?	For any clause C_i : $Pr[don't \text{ satisfy } C_i] = (\frac{1}{2})^3 = \frac{1}{8}$ $Pr[\text{satisfy } C_i] = \frac{7}{8}$ Assume k clauses \implies expected number of satisfied clauses $\ge \frac{7}{8}k$ (linearity of expectation) Corollary: expected number of clauses satisfied by a random assignment is $\ge \frac{7}{8}k$ of optimum (since optimum $\le k$) A randomized approximation algorithm (guarantee for expected value)
Clicker Question Consider a 2-SAT instance with k clauses where each clause has two distinct variables. Suppose each variable is set to true independently with probability $\frac{1}{2}$. What is the expected number of satisfied clauses? A. $\frac{1}{4}k$ B. $\frac{1}{2}k$ C. $\frac{3}{4}k$ D. $\frac{7}{8}k$	Probabilistic MethodProve an object exists by showing that a randomized procedure finds it with nonzero probability.Corollary: For every 3-SAT instance with k clauses, there is a truth assignment that satisfies $\geq \frac{7}{8}k$ clauses.Proof: Expected number of satisfied clauses is $\frac{7}{8}k$; a random variable is at least expected value with nonzero probability An existence proof based on randomization!Corollary. Every 3-SAT instance with ≤ 7 clauses is satisfiable! Proof: There is some assignment that satisfies $\geq \frac{7}{8}k$ clauses. Then $\#$ unsatisfied clauses $< \frac{k}{8} \le \frac{7}{8} < 1$ There are no unsatisfied clauses.

Clicker Question	How Many Tries to Satisfy $\frac{7}{8}kk$ Clauses?
For what number of clauses can we guarantee that a 2-SAT formula is satisfiable? A. 2 or fewer B. 3 or fewer C. 3 or more D. 4 or fewer Example: $(x_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2)$	Claim: Probability of random assignment satisfying $\geq \frac{7}{8}k$ clauses is $\geq \frac{1}{8k}$ Proof: Let p_j = probability that j clauses are satisfied. Group sum by terms $j < \frac{7}{8}k$ and $j \geq \frac{7}{8}k$. $\frac{7}{8}k = \sum_{j < \frac{7}{8}k} j \cdot p_j + \sum_{j \geq \frac{7}{8}k} j \cdot p_j$ largest j in left sum is $< \frac{7}{8}k \leq \frac{7k-1}{8}$ $\leq (\frac{7}{8}k - \frac{1}{8}) \sum_{j < \frac{7}{8}k} p_j + k \sum_{j \geq \frac{7}{8}k} p_j$ $\leq (\frac{7}{8}k - \frac{1}{8}) \cdot 1 + kp_{suc}$ Thus, $p_{suc} \geq \frac{1}{8k} \implies$ expected tries to satisfy $\frac{7}{8}k$ clauses is $\leq 8k$ Fact. Can derandomize \Rightarrow deterministic poly-time algorithm to satisfy $\geq \frac{7}{8}k$ clauses. Fact. No poly-time algorithm can find an assignment satisfying $\geq (\frac{7}{8} + \epsilon)k$ for every satisfiable formula unless $P = NP$.
Monte Carlo vs. Las Vegas Algorithms	Review
Monte Carlo:	
 guaranteed: runs in polynomial time likely: finds correct answer 	Asymptotic analysis
Example: Contraction algorithm for global min-cut	 Graph algorithms Greedy
	 Minimum Spanning Trees Divide and conquer
Las Vegas.	 Dynamic programming
guaranteed: finds correct answer	 Network flows Polynomial time reductions
Intely: runs in polynomial time Eventually: Development with meeting (mislocart, March 2, Sum)	 NP-completeness
Example: Randomized k^{cr} /median/quicksort, MAX-3-SAT	Randomized, approximation algorithms
Given Las Vegas algorithm, place time bound \implies get Monte Carlo In general, can't do the other way around	
Algorithmic Complexity	Graph Searches: BES and DES
$f(n) = O(g(n))$ (and Ω, Θ) are <i>relations</i> between functions	
Can also see $O(q(n))$ as a <i>class of functions</i> that grow	
asymptotically not faster than g	BFS from node s: Partitions nodes into layers $L_0 = \int e^{\int} L_1 L_2 L_2$
$ \begin{array}{l} f(n)=O(g(n)) \text{ (upper bound) means} \\ \text{ there exist } c>0 \text{ and } n_0 \text{ s.t. } f(n) \leq cg(n) \; \forall n \geq n_0 \end{array} $	 Partitions nodes into layers L₀ = {s}, L₁, L₂, L₃ L_i defined as neighbors of nodes in L_{i-1} that aren't already in L₀ ∪ L₁ ∪ ∪ L_{i-1}.
Can choose c and n_0 as needed (arbitrarily large)	 L_i is set of nodes at distance exactly i from s Use for: shortest path from s, test bipartiteness
$f(n) = \Omega(g(n))$ (lower bound)	DFS from node s
there exist $c > 0$ and n_0 s.t. $f(n) \ge cg(n) \ \forall n \ge n_0$	Recursively call on each unvisited node Both run in time $O(m + n)$
equivalent to $g(n) = O(f(n))$	 Both can be used to find connected components of graph,
$f(n) = \Theta(g(n)) \text{ equivalent to } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$	test whether there is a path from s to t
Know definitions and apply them	
Compare two functions Analyze running time	

Graph Searches: BFS and DFS	Directed Acyclic Graphs
 Any search will construct a tree tree edge: when first visiting a node from a neighbor tree shape may differ with choice of neighbor order Undirected graphs DFS has tree edges and back edges (to indirect ancestor) BFS has tree edges and non-tree edges (as most ±1 difference) Directed graphs DFS edges: tree, back (to ancestor), cross (between subtrees) and forward (to descendant) BFS non-tree edges: go at most 1 level down, same level, or any level up Cycle detection: use DFS, only back edges Detect for directed graphs: mark nodes unvisited/open/closed 	DFS has no back edges (only tree, cross and forward edges) Topological Ordering / Sorting: iff graph is DAG keep taking nodes with no incoming edges in linear time: $O(V + E)$ Some algorithms are efficient for special case of DAGs e.g. find longest path (dynamic programming)
Bipartite Graphs	Flavors of Graph Traversal
 An undirected graph G is bipartite if nodes partitioned in two sets, no edges within each set (color nodes red, blue, no edge with endpoints of same color) Two equivalent conditions: G bipartite if and only if it has no odd cycle G bipartite if and only no edge within same layer of BFS 	 Algorithms that grow a set S of explored nodes from starting node s BFS (traversal): add all nodes v that are neighbors of some node u ∈ S. Repeat. Dijkstra (shortest paths): add node v with smallest value of d(u) + ℓ(u, v) for some node u in S, where d(u) is distance from s to u. Repeat. Prim (MST): add node v with smallest value of c(u, v) where u ∈ S. Repeat.
Amortized Analysis	Greedy
Often, useful to count <i>total</i> work rather than work per iteration naive analysis of BFS and DFS: $O(V^2)$, real bound $O(V + E)$ more complex: Union-Find, negative cycle detection Minor data structure changes can improve runtime bound e.g., updating indegree for topological sorting	Make local choice that seems best now earliest deadline for jobs shortest edge for Kruskal, Prim closest node for Dijkstra For problems with <i>optimal substructure</i> property <i>Correctness Arguments</i> Greedy stays ahead Exchange argument (compare to assumed optimum) careful if several optimal solutions

Minimum Spanning Trees

- Definitions: spanning tree, MST, cut
- Cut property: lightest edge across any cut belongs to every MST
- ▶ Prim's algorithm: maintain a set S of explored nodes. Add cheapest edge from S to V S. Repeat.
- Kruskal's algorithm: consider edges in order of cost. Add edge if it does not create a cycle.
- Cycle property: most expensive edge in any cycle does not belong to MST

Divide and Conquer

Divide problem into several parts

Solve each instance

Combine solutions to solve original problem

Recurrences

Unroll (draw recursion tree)

Guess solution ($f(n) \leq c \cdot g(n)$), prove by strong induction

Use Master Theorem: $T(n) = aT(n/b) + O(n^d)$. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Strengthening Assumptions	Dynamic Programming
	Overlapping subproblems: avoid recomputing common partial results
	Often: computing optimum: <i>optimal substructure</i> but evaluates multiple choices, unlike greedy
Solve <i>more</i> than was asked for sort-and-count for counting inversions Return more than was asked for crowd increase problem on midterm 2	Binary choice (choose or don't choose an item)
	<i>n</i> -ary choice (multiple options): rod cutting
	Adding one more dimension (subset sum, knapsack)
	Example: Weighted interval scheduling
Avoid recomputations!	$\blacktriangleright OPT(j) = \max\{OPT(j-1), w_j + OPT(p(j))\}$
	• OPT(0) = 0 • Compute OPT(j) iteratively for $j = 0$ to n
	Running time $O(n)$
	Pseudopolynomial cases: proportional to one of input values actually <i>exponential</i> in number of bits for that input value
Space-Time Tradeoff	Network Flows: Ford-Fulkerson
Space-Time Tradeoff	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities
Space-Time Tradeoff	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut.
Space-Time Tradeoff Use more time to save some space	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects s from t (cut).
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely)	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects s from t (cut). Max flow: forward edges saturated, backward edges have no flow.
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects <i>s</i> from <i>t</i> (cut). Max flow: forward edges saturated, backward edges have no flow. Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edges date (cm) $O(mn^2)$ (Disite)
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects <i>s</i> from <i>t</i> (cut). Max flow: forward edges saturated, backward edges have no flow. Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz)
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space	Network Flows: Ford-Fulkerson Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects <i>s</i> from <i>t</i> (cut). Max flow: forward edges saturated, backward edges have no flow. Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz) Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space	Network Flows: Ford-FulkersonFlow networks directed, source-sink, edge capacitiesMaximum flow = minimum cut.Residual graph for max flow disconnects s from t (cut).Max flow: forward edges saturated, backward edges have no flow.Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz)Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.Maximum bipartite matching: $O(mn)$ time
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space	Network Flows: Ford-FulkersonFlow networks directed, source-sink, edge capacitiesMaximum flow = minimum cut.Residual graph for max flow disconnects s from t (cut).Max flow: forward edges saturated, backward edges have no flow.Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz)Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.Maximum bipartite matching: $O(mn)$ time
Space-Time Tradeoff Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space	Network Flows: Ford-FulkersonFlow networks directed, source-sink, edge capacitiesMaximum flow = minimum cut.Residual graph for max flow disconnects s from t (cut).Max flow: forward edges saturated, backward edges have no flow.Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz)Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.Maximum bipartite matching: $O(mn)$ time

Finding Reductions	A Classification of NP-Complete Problems
Problems are very close (map to one another) SETCOVER and HITTINGSET Problems may be are duals: VERTEXCOVER and INDEPENDENTSET Sometimes we construct gadgets 3-SAT to INDEPENDENTSET	 Useful Read: Kleinberg & Tardos, Ch. 8.10 Recall: Optimization problems (find the min or max number of) Decision problems (is there solution with ≤ k or ≥ k of) Equivalent in complexity, for a given problem
Satisfiability problems	Covering Problems
 "Most general": satisfy all constraints CIRCUIT-SAT SAT 3-SAT 	 Achieve some global goal with few elements Vertex Cover: cover edges with vertices Set Cover: cover entire set with subsets Hitting Set: cover subsets with elements Dominating Set: cover self and neighbor vertices
Packing Problems	Sequencing problems
 Choose many elements while avoiding conflicts Independent Set vertices with no edges Set Packing non-intersecting subsets Polynomial Matching (edges with no common endpoints) Done: case of bipartite graphs (network flow) 	 Hamiltonian Path (all nodes) reduction to cycle: extra node, connected to all others Hamiltonian Cycle reduction to path: split a node, add an endpoint to each half Traveling Salesman Problem: minimum-length tour reduce from HAM-CYCLE

