
COMPSCI 311: Introduction to Algorithms
Lecture 26: Randomized Algorithms. Review

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

1 May 2019

Randomization + Approximation: Max-3-Sat

3-Sat: Given set of clauses, is there a satisfying truth assignment?
What if we can’t satisfy all clauses (constraints)? Do next best

Max-3-Sat. Given a 3-Sat formula, find a truth assignment that
satisfies as many clauses as possible
(Note: three distinct variables per clause)

C1 = x2 ∨ x̄3 ∨ x̄4

C2 = x2 ∨ x3 ∨ x̄4

C3 = x̄1 ∨ x2 ∨ x4

C4 = x̄1 ∨ x̄2 ∨ x3

C5 = x1 ∨ x̄2 ∨ x̄4

How hard is Max-3-Sat ?

Reformulate as decision problem:

Given formula φ and k ∈ N, is there an assignment satisfying ≥ k
clauses?

Is this NP-complete? Yes!
Taking k = number of clauses, we obtain 3-SAT!
medskip

Simple idea: Flip a coin for each xi =⇒ set to 1 or 0
(set each variable true with probability 1

2 , independently)

How many clauses do we expect to satisfy?

Randomized Max-3-Sat

For any clause Ci:

Pr[don’t satisfy Ci] = (1
2)3 = 1

8
Pr[satisfy Ci] = 7

8

Assume k clauses =⇒ expected number of satisfied clauses ≥ 7
8k

(linearity of expectation)

Corollary: expected number of clauses satisfied by a random
assignment is ≥ 7

8k of optimum (since optimum ≤ k)
A randomized approximation algorithm (guarantee for expected
value)

Clicker Question

Consider a 2-Sat instance with k clauses where each clause has two
distinct variables. Suppose each variable is set to true independently
with probability 1

2 . What is the expected number of satisfied
clauses?

A. 1
4k

B. 1
2k

C. 3
4k

D. 7
8k

Probabilistic Method
Prove an object exists by showing that a randomized procedure
finds it with nonzero probability.

Corollary: For every 3-Sat instance with k clauses, there is a truth
assignment that satisfies ≥ 7

8k clauses.

Proof: Expected number of satisfied clauses is 7
8k;

a random variable is at least expected value with nonzero probability

An existence proof based on randomization!

Corollary. Every 3-SAT instance with ≤ 7 clauses is satisfiable!

Proof: There is some assignment that satisfies ≥ 7
8k clauses. Then

unsatisfied clauses < k

8 ≤
7
8 < 1

There are no unsatisfied clauses.

Clicker Question

For what number of clauses can we guarantee that a 2-Sat formula
is satisfiable?

A. 2 or fewer

B. 3 or fewer

C. 3 or more

D. 4 or fewer

Example:

(x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2)

How Many Tries to Satisfy 7
8kk Clauses?

Claim:
Probability of random assignment satisfying ≥ 7

8k clauses is ≥ 1
8k

Proof: Let pj = probability that j clauses are satisfied.
Group sum by terms j < 7

8k and j ≥ 7
8k.

7
8k = ∑

j< 7
8 k j · pj + ∑

j≥ 7
8 k j · pj

largest j in left sum is < 7
8k ≤ 7k−1

8
≤ (7

8k − 1
8) ∑

j< 7
8 k pj + k

∑
j≥ 7

8 k pj

≤ (7
8k − 1

8) · 1 + kpsuc

Thus, psuc ≥ 1
8k =⇒ expected tries to satisfy 7

8k clauses is ≤ 8k

Fact. Can derandomize ⇒ deterministic poly-time algorithm to
satisfy ≥ 7

8k clauses.

Fact. No poly-time algorithm can find an assignment satisfying
≥ (7

8 + ε)k for every satisfiable formula unless P = NP.

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo:
I guaranteed: runs in polynomial time
I likely: finds correct answer

Example: Contraction algorithm for global min-cut.

Las Vegas.
I guaranteed: finds correct answer
I likely: runs in polynomial time

Example: Randomized kth/median/quicksort, Max-3-Sat

Given Las Vegas algorithm, place time bound =⇒ get Monte Carlo
In general, can’t do the other way around

Review

I Asymptotic analysis
I Graph algorithms
I Greedy
I Minimum Spanning Trees
I Divide-and-conquer
I Dynamic programming
I Network flows
I Polynomial-time reductions
I NP-completeness
I Randomized, approximation algorithms

Algorithmic Complexity
f(n) = O(g(n)) (and Ω, Θ) are relations between functions

Can also see O(g(n)) as a class of functions that grow
asymptotically not faster than g

f(n) = O(g(n)) (upper bound) means
there exist c > 0 and n0 s.t. f(n) ≤ cg(n) ∀n ≥ n0

Can choose c and n0 as needed (arbitrarily large)

f(n) = Ω(g(n)) (lower bound)
there exist c > 0 and n0 s.t. f(n) ≥ cg(n) ∀n ≥ n0
equivalent to g(n) = O(f(n))

f(n) = Θ(g(n)) equivalent to f(n) = O(g(n)) and f(n) = Ω(g(n))

Know definitions and apply them
Compare two functions
Analyze running time

Graph Searches: BFS and DFS

I BFS from node s:
I Partitions nodes into layers L0 = {s}, L1, L2, L3 . . .
I Li defined as neighbors of nodes in Li−1 that aren’t

already in L0 ∪ L1 ∪ . . . ∪ Li−1.
I Li is set of nodes at distance exactly i from s
I Use for: shortest path from s, test bipartiteness

I DFS from node s
I Recursively call on each unvisited node

I Both run in time O(m+ n)
I Both can be used to find connected components of graph,

test whether there is a path from s to t

Graph Searches: BFS and DFS
I Any search will construct a tree

tree edge: when first visiting a node from a neighbor
tree shape may differ with choice of neighbor order

I Undirected graphs

DFS has tree edges and back edges (to indirect ancestor)
BFS has tree edges and non-tree edges (as most ±1 difference)
I Directed graphs

DFS edges: tree, back (to ancestor), cross (between subtrees) and
forward (to descendant)

BFS non-tree edges:
go at most 1 level down, same level, or any level up

Cycle detection: use DFS, only back edges
Detect for directed graphs: mark nodes unvisited/open/closed

Directed Acyclic Graphs

DFS has no back edges (only tree, cross and forward edges)

Topological Ordering / Sorting: iff graph is DAG
keep taking nodes with no incoming edges
in linear time: O(V + E)

Some algorithms are efficient for special case of DAGs
e.g. find longest path (dynamic programming)

Bipartite Graphs

I An undirected graph G is bipartite if nodes partitioned in two
sets, no edges within each set

(color nodes red, blue, no edge with endpoints of same color)
I Two equivalent conditions:

I G bipartite if and only if it has no odd cycle
I G bipartite if and only no edge within same layer of BFS

Flavors of Graph Traversal

Algorithms that grow a set S of explored nodes from starting node s
I BFS (traversal):

add all nodes v that are neighbors of some node u ∈ S.
Repeat.

I Dijkstra (shortest paths):
add node v with smallest value of d(u) + `(u, v) for some node
u in S, where d(u) is distance from s to u. Repeat.

I Prim (MST):
add node v with smallest value of c(u, v) where u ∈ S. Repeat.

Amortized Analysis

Often, useful to count total work rather than work per iteration

naive analysis of BFS and DFS: O(V 2), real bound O(V + E)

more complex: Union-Find, negative cycle detection

Minor data structure changes can improve runtime bound
e.g., updating indegree for topological sorting

Greedy

Make local choice that seems best now
earliest deadline for jobs
shortest edge for Kruskal, Prim
closest node for Dijkstra

For problems with optimal substructure property

Correctness Arguments

Greedy stays ahead
Exchange argument (compare to assumed optimum)
careful if several optimal solutions

Minimum Spanning Trees

I Definitions: spanning tree, MST, cut
I Cut property: lightest edge across any cut belongs to every

MST
I Prim’s algorithm: maintain a set S of explored nodes. Add

cheapest edge from S to V − S. Repeat.
I Kruskal’s algorithm: consider edges in order of cost. Add edge

if it does not create a cycle.
I Cycle property: most expensive edge in any cycle does not

belong to MST

Divide and Conquer

Divide problem into several parts

Solve each instance

Combine solutions to solve original problem

Recurrences

Unroll (draw recursion tree)

Guess solution (f(n) ≤ c · g(n)), prove by strong induction

Use Master Theorem: T (n) = aT (n/b) +O(nd). Then:

T (n) =





O(nd) if d > logb a

O(nd logn) if d = logb a

O(nlogb a) if d < logb a

Strengthening Assumptions

Solve more than was asked for
sort-and-count for counting inversions

Return more than was asked for
crowd increase problem on midterm 2

Avoid recomputations!

Dynamic Programming
Overlapping subproblems: avoid recomputing common partial results

Often: computing optimum: optimal substructure
but evaluates multiple choices, unlike greedy

Binary choice (choose or don’t choose an item)

n-ary choice (multiple options): rod cutting

Adding one more dimension (subset sum, knapsack)

Example: Weighted interval scheduling
I OPT(j) = max{OPT(j − 1), wj + OPT(p(j))}
I OPT(0) = 0
I Compute OPT(j) iteratively for j = 0 to n
I Running time O(n)

Pseudopolynomial cases: proportional to one of input values
actually exponential in number of bits for that input value

Space-Time Tradeoff

Use more time to save some space

Sometimes, same asymptotic time (more rarely)

Hirschberg sequence alignment, T (n) = 2T (n/2) +O(n2) ⇒ O(n2)

More often: higher time complexity for smaller space

Network Flows: Ford-Fulkerson

Flow networks directed, source-sink, edge capacities

Maximum flow = minimum cut.

Residual graph for max flow disconnects s from t (cut).

Max flow: forward edges saturated, backward edges have no flow.

Complexity: O(mnCmax) (Ford-Fulkerson),
O(m2n) (Edmonds-Karp), O(mn2) (Dinitz)

Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.

Maximum bipartite matching: O(mn) time

Augmenting Path

G

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

5

8

3
5

4

3

11

7
5

15

4

12

1

New Flow

G

v1 v2

v3 v4

ts

11/16

12/13

11/14

0/9

12/12

1/4
7/7

19/20

4/4

Gf

v1 v2

v3 v4

ts

11

5

1

12

31
9

3

11

7
1

19

4

12

Polynomial Time Reductions
I We focus on decision problems, e.g., for input 〈G, k〉, does

there exist a vertex cover with at most k nodes?

I Given two decision problems X and Y , X ≤P Y means that
it’s possible to transform an input I of X into an input f(I) of
Y in polynomial time such that

I is a yes instance of X iff f(I) is a yes instance of Y

The transformation is a reduction from X to Y .

I We saw examples such as

VertexCover ≤P IndependentSet

3-SAT ≤P IndependentSet

I Useful property: If X ≤P Y and Y ≤P Z then X ≤P Z.

P and NP / Solver vs. Certifier
I P: Decision problems with a polynomial time algorithm.

I NP: Decision problems with a polynomial time certifier.

Intuition: A correct solution can be certified in polynomial time.

Let X be a decision problem and s be problem instance
(e.g., s = 〈G, k〉 for Independent Set)

Poly-time solver. Algorithm A(s) such that A(s) = Yes iff correct
answer is Yes, and running time polynomial time in |s|
Poly-time certifier. Algorithm C(s, t) such that for every instance s,
there is some t such that C(s, t) = Yes iff correct answer is Yes,
and running time is polynomial in |s|.
I t is the “certificate” or hint. Must also be polynomial-size in |s|

NP Completeness
I P = set of problems you can solve in polynomial time

e.g., minimum spanning tree, matchings, flows, shortest path.
I NP = set of problems you can verify in polynomial time:
I If the answer should be yes then there’s some extra input

(a “witness” or “certificate” or “hint”) that you can be given that
makes it easy (i.e., in poly time) to check answer is yes
I If the answer should be “no" then there is no such input.

I Y is NP-Complete if Y ∈ NP and X ≤P Y ∀ X ∈ NP.
I Useful Properties: Suppose X ≤P Y . Then

I If Y ∈ P then X ∈ P .
I If Y ∈ NP and X is NP-complete then Y is also NP complete
I If Y ∈ P and X is NP-complete then P=NP.

I NP-Complete problems are the hardest problems in NP.
If you can solve one in polynomial time then you prove P=NP
Generally believed not possible.

NP Complete Problems

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesman

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

Finding Reductions

Problems are very close (map to one another)
SetCover and HittingSet

Problems may be are duals:
VertexCover and IndependentSet

Sometimes we construct gadgets
3-SAT to IndependentSet

A Classification of NP-Complete Problems

Useful Read: Kleinberg & Tardos, Ch. 8.10

Recall:
I Optimization problems (find the min or max number of . . .)

I Decision problems (is there solution with ≤ k or ≥ k of . . .)

Equivalent in complexity, for a given problem

Satisfiability problems

“Most general”: satisfy all constraints
I Circuit-SAT

I SAT

I 3-SAT

Covering Problems

Achieve some global goal with few elements
I Vertex Cover: cover edges with vertices

I Set Cover: cover entire set with subsets

I Hitting Set: cover subsets with elements

I Dominating Set: cover self and neighbor vertices

Packing Problems

Choose many elements while avoiding conflicts
I Independent Set vertices with no edges

I Set Packing non-intersecting subsets

Polynomial

Matching (edges with no common endpoints)
Done: case of bipartite graphs (network flow)

Sequencing problems

I Hamiltonian Path (all nodes)
reduction to cycle: extra node, connected to all others

I Hamiltonian Cycle
reduction to path: split a node, add an endpoint to each half

I Traveling Salesman Problem: minimum-length tour
reduce from Ham-Cycle

Numerical Problems

I Subset-Sum numbers with precise sum

reduce from SAT: construct numbers digit-by-digit

Partitioning / Coloring Problems

I 3-coloring no edge with same-color nodes

I k-coloring

Polynomial

2-coloring (bipartite graph)

Approximation Algorithms

I ρ-approximation algorithm
I Runs in polynomial time
I Solves arbitrary instance of the problem
I Guaranteed to find a solution within ratio ρ of optimum:

value of our solution
value of optimum solution ≤ ρ

Sometimes non-obvious (spanning tree to get cycle in TSP),
both greedy and non-greedy (choose both nodes for vertex cover).

Examples:
I 1.5-approximation for Load Balancing
I 2-approximation for Clustering
I 2-approximation for Vertex Cover

Randomized Algorithms

I Efficient in expectation

I Optimal with high probability

I Break (undesired) symmetry

I Show some solution exists, or derive bound on number

Types of randomized algorithms:
I Fail with some small probability (Monte Carlo)
I Always succeed, but running time is random (Las Vegas)

Techniques used in proof:
expected value, union bound, write sum in two ways

