	Deterministic Algorithms
COMPSCI 311: Introduction to Algorithms Lecture 25: Randomized Algorithms Marius Minea University of Massachusetts Amherst slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor	 So far: deterministic algorithms on worst case inputs. Why deterministic algorithms? Easier to understand, pretty powerful. Why worst case? Enables precise statements But maybe not reflective of real-world instances. Average-case analysis? What distribution?
Why Randomized Algorithms ?	Minimum Cuts
 Efficient in expectation Optimal with high probability Break (undesired) symmetry Show some solution exists, or derive bound on their number Types of randomized algorithms: Fail with some small probability Always succeed, but running time may be non-polynomial Examples Min-Cut Randomized Median Finding Max 3-SAT 	 Problem. Given undirected G = (V, E), partition V into sets A, V \ A, minimizing edge count across cut: cut(A) = {(u, v) ∈ E, u ∈ A, v ∉ A} We saw how to compute minimum s - t cut in directed graph. for fixed s, t How do we compute global minimum cut? Is this harder?
Deterministic Algorithm	Contraction Algorithm (Karger, 1995)
Idea. Convert into $s - t$ cut in directed graph. Replace $e = (u, v)$ with directed edges both ways (capacity 1). Pick arbitrary s . for each other vertex t do Compute minimum $s - t$ cut. Return smallest computed $s - t$ cut. Running Time. n max-flow computations $\Rightarrow O(mn^2)$ at best.	 Idea: only edges across cut matter, edges within set don't Collapse S and V \ S into one node each But allow multiple edges between nodes (multigraph) Def. Multigraph G = (V, E) is a graph that can have parallel edges. Def. Contracting an edge (u, v) in G = (V, E) produces a new multigraph G' = (V', E') With new node w instead of u, v (edges (u, v) deleted). If (x, u) or (x, v) ∈ E, then (x, w) ∈ E'. All other edges preserved.

Randomized Splitters How to choose splitter? We want recursive calls to work on much smaller sets. Idea. Choose splitter uniformly at random. Best case, splitter is the median: **Analysis.** Phase *j* when $n(3/4)^{j+1} \le |S| \le n(3/4)^j$. $T(n) \leq T(n/2) + cn \Rightarrow O(n)$ runtime Worst case, splitter is largest element: ▶ $\Pr[\text{central splitter}] = 1/2.$ $T(n) \leq T(n-1) + cn \Rightarrow O(n^2)$ runtime _____ X • Middle case, splitter separates ϵn elements $T(n) \le T((1-\epsilon)n) + cn$ $T(n) \le cn \left[1 + (1 - \epsilon) + (1 - \epsilon)^2 + \ldots \right] \le \frac{cn}{\epsilon}$ How can we stay close to the best case? Applications Analysis ▶ Let *Y* be a r.v. equal to number of steps of the algorithm • $Y = Y_0 + Y_1 + Y_2 + \dots$ where Y_j is steps in phase j• One iteration in phase j takes $cn(3/4)^j$ steps. ▶ $\mathbf{E}[Y_i] \leq 2cn(3/4)^j$ since we expect two iterations.

$$\mathbf{E}[Y] = \sum_{j} \mathbf{E}[Y_{j}] \le \sum_{j} 2cn(3/4)^{j}$$
$$= 2cn \sum_{j} (3/4)^{j} \le 8cn$$

Theorem

Expected running time of SELECT(n,k) is O(n).

Review: Randomized Algorithms

- Efficient in expectation
- Optimal with high probability
- Break (undesired) symmetry
- Show some solution exists, or derive bound on number

Types of randomized algorithms:

- ► Fail with some small probability (Monte Carlo)
- Always succeed, but running time may be large (Las Vegas)

- **Claim.** Expect to stay in phase *j* for two rounds.
 - ▶ Call splitter *central* if separates 1/4 fraction of elements.
 - ▶ If X is number of attempts until central splitter, $\sum_{i=1}^{\infty} i (1 - i) i = 1$

$$\mathbf{E}[X] = \sum_{j=1}^{n} j \Pr[X = j] = \sum_{j=1}^{n} j p (1-p)^{j-1}$$
$$= \frac{p}{1-p} \sum_{j=1}^{\infty} j (1-p)^j = \frac{p}{1-p} \frac{(1-p)}{p^2}$$
$$= \frac{1}{p}$$

Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random. Form S^-, S^+ .
- Recursively sort both.
- Concatenate together.

Theorem. Quicksort has expected $O(n \log n)$ time.