COMPSCI 311: Introduction to Algorithms

Lecture 25: Randomized Algorithms

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

29 April 2019

Deterministic Algorithms

» So far: deterministic algorithms on worst case inputs.

» Why deterministic algorithms?

» Easier to understand, pretty powerful.

» Why worst case?

» Enables precise statements
» But maybe not reflective of real-world instances.
> Average-case analysis? What distribution?

Why Randomized Algorithms 7

» Efficient in expectation

» Optimal with high probability

> Break (undesired) symmetry

» Show some solution exists, or derive bound on their number

Types of randomized algorithms:

» Fail with some small probability
» Always succeed, but running time may be non-polynomial

Examples

» Min-Cut
» Randomized Median Finding
» Max 3-SAT

Minimum Cuts

Problem. Given undirected G = (V, E), partition V' into sets
A,V \ A, minimizing edge count across cut:

cut(A) = [{(u,v) € E,u € A,v ¢ A}|

» We saw how to compute minimum s — ¢ cut in directed graph.
for fixed s, t
» How do we compute global minimum cut? |s this harder?

Deterministic Algorithm

Idea. Convert into s — ¢ cut in directed graph.

Replace e = (u,v) with directed edges both ways (capacity 1).
Pick arbitrary s.
for each other vertex ¢ do

Compute minimum s — ¢ cut.

Return smallest computed s — t cut.

Running Time. n max-flow computations = O(mn?) at best.

Contraction Algorithm (Karger, 1995)

» ldea: only edges across cut matter, edges within set don't
» Collapse S and V'\ S into one node each
» But allow multiple edges between nodes (multigraph)

Def. Multigraph G = (V, E) is a graph that can have parallel edges.
Def. Contracting an edge (u,v) in G = (V, E) produces a new
multigraph G’ = (V', E')

»> With new node w instead of u,v (edges (u,v) deleted).
> If (z,u) or (z,v) € E, then (z,w) € E'.
» All other edges preserved.

Contraction Algorithm: Idea

> Pick edge (u,v) € E uniformly at random

» Contract edge (u,v), replacing u, v with new node w
» Preserve edges, setting v and v endpoints to w

» Keep multiple edges, delete self-loops

LREEELY
PRELFFIb

Reference: Thore Husfeldt

image credit: Kevin Wayne / Pearson

Contraction Algorithm

S(v) ={v} forallveV. > nodes contracted into v
while |V| > 2 do

Pick edge (u,v) € E uniformly at random.

Contract edge (u,v) to get G’ with new node w

Set S(w) < S(u) US(v). > new super-node

Update G + G'.

return S(v) forv e V. > cut with 2 nodes

Contraction algorithm: example execution

~ FRE3R3R2RRATss
S &+ 4 gr-datal- FETEE TSR
- BHRRBELALDENCCIr/
~ REBRARRERCCLON

:;‘::,:mm@@@@@@@@@ggwwﬁ
. @@@@@@é@ggaﬁﬁpp\

Reference: Thore Husfeldt

slide credit: Kevin Wayne / Pearson

15

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least 1/(3).
Proof. Suppose (4, B) is a global min cut with cut(4,B) =k

» What could go wrong in the first step?
> Select (u,v) where u € A,v € B.

What is the probability of failure in the first
step in this example?

A. 3/20

B. 3/23

C. 3/43

D. 1

Contraction Algorithm Analysis

k
Prfail in round 1] = Pr[select u € A,v € B] = E

» To upper bound failure probability, need lower bound on |E|

Suppose G is a graph with global minimum cut of size k. Then the
degree of every node is always

A. At least k
B. Exactly k
C. At most k
D. At least 2m/n

Every node has degree > k — |E| > %kn.

Contraction Algorithm Analysis

k
Pr[fail in round 1] = Pr[select v € A,v € B] = T8
k 2
» Prifail in round 1] < — = —
skn n
2 L — 2
» puc(l) = Pr[success in round 1] > 1 — o= n -

> Each time, |E’/| > kn//2, so success probability > %52
n

» Success only if success in each round (product of probabilities)

> Dsuc = psuc(l)psuc(2) o 'psuc(n -2)> nTﬁZi:i‘ s % = ﬁ

Contraction Algorithm: Repeat for Success

Theorem. Alg finds global min cut with probability at least 1/(3).
Corollary. If run (3)Inn times, success probability is > 1 — 1.
Proof.

¢
1
Pr[Fail all ¢ times] < (1 — T)
(5)
If t = ¢(3) this is at most e €.
(From calculus: (1 —1/2)* < 1/e = limg00(1 — 1/2)%)

1

If run (3) Inn times, failure probability < e=1n" =1

How many minimum cuts?

A graph may have several minimum cuts

When computing probability to succeed, we actually proved more!
We've shown the probability to return any minimum cut is > ﬁ
But any two cuts are distinct! Let their number be ¢

Pmin—cut = Pmin—cut] T - - - T Pmin—cute = Cﬁ

But Pmin—cut <1 = ¢< TL(TL — 1)/2

Median Find

Problem. Given a set of numbers S = {ay,...,a,} the median is
the number in the middle if the numbers were sorted.

» If n is odd then kth smallest element where k = (n + 1)/2.
» If n is even then kth smallest element where k = n/2.

Deterministic algorithm?

» Sort numbers, take kth smallest.
> O(nlogn).

h
More Generally: k" Smallest

Problem. Given a set of numbers S = {a1,...,a,} and number £,
return kth smallest number. (Assume no duplicates)

Special cases:

» k= 1: minimum element O(n)
» &k =mn: maximum element O(n).

Why is it O(nlogn) for k =n/2?

Divide and Conquer Algorithm

» Choose splitter (or pivot) a; € S
> Form sets S~ = {a; : aj < a;}, ST ={a; : a; > a;}.

If:

> |S7| =k —1: a; is the target.

> |S7| > k: recurse on (S, k).

> |S7| <k—1,recurse on (ST, k— (]S7|+1)).
Can do deterministic O(n) algorithm along same idea
[Blum, Floyd, Pratt, Rivest, Tarjan '72]

Today: randomized

Pseudocode

SELECT(S k):
Choose splitter a; € S.
for each a; € S do
Put a; € S7 if a; < a;.
Put aj; € Stif a; > a;.
If |[S7| =k — 1, then return a;.
If |S~| > k, return SELECT(S ™, k).
Else, return SELECT(ST, k — (|S~| + 1)).

Looks kind of like quicksort. . .

Fact. Algorithm is correct.

How to choose splitter? Randomized Splitters

We want recursive calls to work on much smaller sets.

. . . Idea. Choose splitter uniformly at random.
» Best case, splitter is the median:

Analysis. Phase j when n(3/4)7+! < |S| < n(3/4)7.
T(n) < T(n/2) + cn = O(n) runtime . .)
» Claim. Expect to stay in phase j for two rounds.

» Call splitter central if separates 1/4 fraction of elements.
» Worst case, splitter is largest element: > Prlcentral splitter] = 1/2.

> If X is number of attempts until central splitter,

Tn)<Tn-1)+cn O(n?) runtime)
s e 0 E[X] =3 jPriX =j] =3 jp(1l—p)’""

» Middle case, splitter separates en elements P

R PG

1

T(n) <T{(1—¢e)n)+cn
cn 1
p

Ty <en[t+1-a+1-e?+..] <= =

How can we stay close to the best case?

Analysis Applications

» Let Y be ar.v. equal to number of steps of the algorithm
> Y =Yy + Y +Ys+... where Y] is steps in phase j
» One iteration in phase j takes cn(3/4) steps. » Randomized median find in expected linear time
> E[Y;| < 2cn(3/4)7 since we expect two iterations.

5] < 2en(3/4) P Quicksort (Sketch)

E[Y]= ZE[YJ] < 220"(3/4)j » Choose pivot at random. Form S—, S+.
J i > Recursively sort both.
=2cn 2(3/4)7 < 8cn » Concatenate together.
J

Theorem. Quicksort has expected O(nlogn) time.

Theorem
Expected running time of SELECT(n,k) is O(n).

Review: Randomized Algorithms

» Efficient in expectation
» Optimal with high probability
> Break (undesired) symmetry

» Show some solution exists, or derive bound on number
Types of randomized algorithms:

> Fail with some small probability (Monte Carlo)
> Always succeed, but running time may be large (Las Vegas)

