
COMPSCI 311: Introduction to Algorithms
Lecture 25: Randomized Algorithms

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

29 April 2019

Deterministic Algorithms

I So far: deterministic algorithms on worst case inputs.

I Why deterministic algorithms?
I Easier to understand, pretty powerful.

I Why worst case?
I Enables precise statements
I But maybe not reflective of real-world instances.
I Average-case analysis? What distribution?

Why Randomized Algorithms ?

I Efficient in expectation
I Optimal with high probability
I Break (undesired) symmetry
I Show some solution exists, or derive bound on their number

Types of randomized algorithms:
I Fail with some small probability
I Always succeed, but running time may be non-polynomial

Examples
I Min-Cut
I Randomized Median Finding
I Max 3-SAT

Minimum Cuts

Problem. Given undirected G = (V,E), partition V into sets
A, V \A, minimizing edge count across cut:

cut(A) = |{(u, v) ∈ E, u ∈ A, v /∈ A}|

I We saw how to compute minimum s− t cut in directed graph.
for fixed s, t

I How do we compute global minimum cut? Is this harder?

Deterministic Algorithm

Idea. Convert into s− t cut in directed graph.
Replace e = (u, v) with directed edges both ways (capacity 1).
Pick arbitrary s.
for each other vertex t do

Compute minimum s− t cut.
Return smallest computed s− t cut.

Running Time. n max-flow computations ⇒ O(mn2) at best.

Contraction Algorithm (Karger, 1995)

I Idea: only edges across cut matter, edges within set don’t
I Collapse S and V \ S into one node each
I But allow multiple edges between nodes (multigraph)

Def. Multigraph G = (V,E) is a graph that can have parallel edges.
Def. Contracting an edge (u, v) in G = (V,E) produces a new
multigraph G′ = (V ′, E′)
I With new node w instead of u, v (edges (u, v) deleted).
I If (x, u) or (x, v) ∈ E, then (x,w) ∈ E′.
I All other edges preserved.

Contraction Algorithm: Idea
I Pick edge (u, v) ∈ E uniformly at random
I Contract edge (u, v), replacing u, v with new node w
I Preserve edges, setting u and v endpoints to w
I Keep multiple edges, delete self-loops

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes u1 and v1.

・Return the cut (all nodes that were contracted to form v1).

11
Reference: Thore Husfeldt

image credit: Kevin Wayne / Pearson

Contraction Algorithm

S(v) = {v} for all v ∈ V . . nodes contracted into v
while |V | > 2 do

Pick edge (u, v) ∈ E uniformly at random.
Contract edge (u, v) to get G′ with new node w
Set S(w)← S(u) ∪ S(v). . new super-node
Update G← G′.

return S(v) for v ∈ V . . cut with 2 nodes

Contraction algorithm: example execution

15

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

slide credit: Kevin Wayne / Pearson

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least 1/
(n

2
)
.

Proof. Suppose (A,B) is a global min cut with cut(A,B) = k

I What could go wrong in the first step?
I Select (u, v) where u ∈ A, v ∈ B.

Contraction algorithm

Contraction algorithm. [Karger 1995]

独Pick an edge e = (u, v) uniformly at random.

独Contract edge e.
- replace u and v by single new super-node w

- preserve edges, updating endpoints of u and v to w

- keep parallel edges, but delete self-loops

独Repeat until graph has just two nodes u1 and v1.

独Return the cut (all nodes that were contracted to form v1).

11
Reference: Thore Husfeldt

What is the probability of failure in the first
step in this example?
A. 3/20
B. 3/23
C. 3/43
D. 1

Contraction Algorithm Analysis

Pr[fail in round 1] = Pr[select u ∈ A, v ∈ B] = k

|E|
I To upper bound failure probability, need lower bound on |E|

Suppose G is a graph with global minimum cut of size k. Then the
degree of every node is always

A. At least k
B. Exactly k
C. At most k
D. At least 2m/n

Every node has degree ≥ k =⇒ |E| ≥ 1
2kn.

Contraction Algorithm Analysis

Pr[fail in round 1] = Pr[select u ∈ A, v ∈ B] = k

|E|

I Pr[fail in round 1] ≤ k
1
2kn

= 2
n

I psuc(1) = Pr[success in round 1] ≥ 1− 2
n

= n− 2
n

I Each time, |E′| ≥ kn′/2, so success probability ≥ n′−2
n′

I Success only if success in each round (product of probabilities)

I psuc = psuc(1)psuc(2) · · · psuc(n− 2) ≥ n−2
n

n−3
n−1 . . .

1
3 = 2

n(n−1)

Contraction Algorithm: Repeat for Success

Theorem. Alg finds global min cut with probability at least 1/
(n

2
)
.

Corollary. If run
(n

2
)

lnn times, success probability is ≥ 1− 1
n .

Proof.

Pr[Fail all t times] ≤
(

1− 1(n
2
)
)t

If t = c
(n

2
)
this is at most e−c.

(From calculus: (1− 1/x)x ≤ 1/e = limx→∞(1− 1/x)x)

If run
(n

2
)

lnn times, failure probability ≤ e− ln n = 1
n

How many minimum cuts?

A graph may have several minimum cuts

When computing probability to succeed, we actually proved more!

We’ve shown the probability to return any minimum cut is ≥ 2
n(n−1)

But any two cuts are distinct! Let their number be c

pmin−cut = pmin−cut1 + . . .+ pmin−cutc ≥ c 2
n(n−1)

But pmin−cut ≤ 1 ⇒ c ≤ n(n− 1)/2

Median Find

Problem. Given a set of numbers S = {a1, . . . , an} the median is
the number in the middle if the numbers were sorted.
I If n is odd then kth smallest element where k = (n+ 1)/2.
I If n is even then kth smallest element where k = n/2.

Deterministic algorithm?
I Sort numbers, take kth smallest.
I O(n logn).

More Generally: k
th Smallest

Problem. Given a set of numbers S = {a1, . . . , an} and number k,
return kth smallest number. (Assume no duplicates)

Special cases:
I k = 1: minimum element O(n)
I k = n: maximum element O(n).

Why is it O(n logn) for k = n/2?

Divide and Conquer Algorithm

I Choose splitter (or pivot) ai ∈ S
I Form sets S− = {aj : aj < ai}, S+ = {aj : aj > ai}.

If:
I |S−| = k − 1: ai is the target.
I |S−| ≥ k: recurse on (S−, k).
I |S−| < k − 1, recurse on (S+, k − (|S−|+ 1)).

Can do deterministic O(n) algorithm along same idea
[Blum, Floyd, Pratt, Rivest, Tarjan ’72]

Today: randomized

Pseudocode

Select(S,k):
Choose splitter ai ∈ S.
for each aj ∈ S do

Put aj ∈ S− if aj < ai.
Put aj ∈ S+ if aj > ai.

If |S−| = k − 1, then return ai.
If |S−| ≥ k, return Select(S−, k).
Else, return Select(S+, k − (|S−|+ 1)).

Looks kind of like quicksort. . .

Fact. Algorithm is correct.

How to choose splitter?
We want recursive calls to work on much smaller sets.
I Best case, splitter is the median:

T (n) ≤ T (n/2) + cn⇒ O(n) runtime

I Worst case, splitter is largest element:

T (n) ≤ T (n− 1) + cn⇒ O(n2) runtime

I Middle case, splitter separates εn elements

T (n) ≤ T ((1− ε)n) + cn

T (n) ≤ cn
[
1 + (1− ε) + (1− ε)2 + . . .

]
≤ cn

ε

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when n(3/4)j+1 ≤ |S| ≤ n(3/4)j .
I Claim. Expect to stay in phase j for two rounds.

I Call splitter central if separates 1/4 fraction of elements.
I Pr[central splitter] = 1/2.
I If X is number of attempts until central splitter,

E[X] =
∞∑

j=1
j Pr[X = j] =

∞∑

j=1
jp(1− p)j−1

= p

1− p
∞∑

j=1
j(1− p)j = p

1− p
(1− p)
p2

= 1
p

Analysis

I Let Y be a r.v. equal to number of steps of the algorithm
I Y = Y0 + Y1 + Y2 + . . . where Yj is steps in phase j
I One iteration in phase j takes cn(3/4)j steps.
I E[Yj] ≤ 2cn(3/4)j since we expect two iterations.

E[Y] =
∑

j

E[Yj] ≤
∑

j

2cn(3/4)j

= 2cn
∑

j

(3/4)j ≤ 8cn

Theorem
Expected running time of Select(n,k) is O(n).

Applications

I Randomized median find in expected linear time

Quicksort (Sketch)
I Choose pivot at random. Form S−, S+.
I Recursively sort both.
I Concatenate together.

Theorem. Quicksort has expected O(n logn) time.

Review: Randomized Algorithms

I Efficient in expectation

I Optimal with high probability

I Break (undesired) symmetry

I Show some solution exists, or derive bound on number

Types of randomized algorithms:
I Fail with some small probability (Monte Carlo)
I Always succeed, but running time may be large (Las Vegas)

