Coping With NP-Completeness

. . . Suppose you want to solve an NP-complete problem?
COMPSCI 311: Introduction to Algorithms What should you do?

Lecture 24: Approximation Algorithms
You can't design an algorithm to do all of the following:

Marius Minea 1. Solve arbitrary instances of the problem
2. Solve problem to optimality
University of Massachusetts Amherst 3. Solve problem in polynomial time

Coping strategies
1. Design algorithms for special cases of problem.
slides credit: Dan Sheldon 2. Design approximation algorithms or heuristics.

3. Use randomization

24 April 2019 (efficient in expectation and/or optimal with high probability)
Approximation Algorithms Load Balancing
» p-approximation algorithm Input:
» Runs in polynomial time . . .
» Solves arbitrary instance of the problem »> Machines 1,2,... e (ldentlcal) o
» Guaranteed to find a solution within ratio p of optimum: > Jobs 1,2,...,n with time ; for ith job

. » Any job can run on any machine
value of our solution

< if goal = minimum
value of optimum solution — d (ifg) Goal:

» Assign jobs to balance load

Today: » A; = set of jobs assigned to machine 4
» Load Balancing > ‘I‘\/Iinimize c:')mpletion time = largest load of any machine =
» Clustering makespan
Clicker Question Preliminary Analysis

Two lower bounds for optimal solution:
1. T" > maxt; can't split job
Let T* be the optimal makespan, i.e., the smallest possible J
completion time of any assignment. What can we say about 7%7 1
2T > ="t
1 m “—
A T > — th (at least as big as the average processing time) J=1
i Makespan is max. load in optimal solution, so at least the average.
B. T* > maxt, (at least as big as the largest job time) Average load is sum of job times / m (number of machines).

J
T* = max T}
7

C. Both A and B.
1 .
D. Neither A nor B. > o ZT i
| o
= ts
m i J

Simple Algorithm: Assign to lightest load

— Example: jobs with times 2, 3, 4, 6, 2, 2
fori=ltomdoT7;=0A4;=0
for j=1ton do

arrive in order
6
Choose i s.t. T; is minimum

3 T, =T+t
A = AU {j}

2
M, M, M . .

Complexity? O(nlogm): priority queue
Clicker Question

Now jobs arrive in order 6, 4, 3, 2, 2, 2.

Analysis

Consider moment when last job is added, leading to highest load

The contribution of
the last job alone
at most the optimum.

Just before adding
the last job, the load

— on M; was at most
the optimum.

. . Ml
What is the final makespan to schedule them on three machines?
A. 6 C.8 Figure 11.2 Accounting for the load on machine M; in two parts: the last job to be
: added, and all the others.
B.7 D.9
Analysis Clicker Question

Consider moment when job leading to highest load is added;
call this job j
new load = old load + ¢;
At that time:
» old load was smallest among all machines

1 n
old load < — Y #;, < T*
mia

» Therefore
new load =old load +¢; < T* + 1™ = 21"

The algorithm gives a 2-approximation.

Our lightest load algorithm immediately assigns each job received.
Considering all possible orderings of the same set of jobs, which of
the following is true?

(Hint: consider jobs with times 4, 3, 2, 2 on two machines.)
A. Getting the largest job first is always best.
B. Getting the largest job last is always worst.

C. None of the above

Worst Case

Approximate solution
via greedy algorithm:

Optimal solution:

The greedy
algorithm was

doing well
L1 | until the last
job arrived.

M, M, M; M, M, M, M; M,

Figure 11.3 A bad example for the greedy balancing algorithm with m =4.

Worst case is arbitrarily close to 2:
Consider m(m — 1) jobs of time 1. They will be perfectly balanced.
Then a huge job of time m comes along = makespan 2m — 1

Optimal distribution would have job of size m by itself, makespan m

Improved Algorithm: Large Jobs First

Intuition: large job coming last is worst case = sort jobs by time:

tg >to>...>1t,. Again, assign next job to smallest load.

Observation:
if m < n, one machine must do two jobs from set t1, 2, ..., tmt1

= T* >ty + 1 = 2tm+1 = tm4+1 < T*/2

Clicker Question

If we assign large jobs first (always to lightest load), which of the
following is true?

A. Every job longer than average will be processed by itself
. Every job with maximum time will be processed by itself
. If only one job has maximum time it will be processed by itself

. The shortest job will not be processed by itself

m O N @

. None of the above

Largest Jobs First: Analysis

Again, consider moment when job j leading to highest load is added.

new load = old load + ¢;

If j < m, job will be added to empty machine

new load = 0+1¢; < T*
If j > m, we have tj < tyqq < T7%/2

1 n
old load < — > "t < T*
mia

1 n
new load < — >t +t; < T* +tyyy < T* +T7/2 = L5T*
mi

Algorithm is a 1.5-approximation (no load is > 1.5 x optimum)

More careful analysis can improve bound to 4/3 (tight)

Clustering or Center Selection

Find k centers covering all given points, with minimal radius
(k is fixed and given)

k = 4 centers

rC)

@ center

W site

Figure: Kevin Wayne / Pearson

Problem Setup

» Input: set of n points P={p1,pa,...,pn} in RZ. A number k.

» Goal: Find k centers C' = {c1,ca,...,cp} in R? such that
every point p € P is close to some center ¢ € C.

Want to minimize maxpep d(p,C)

where d(p, C') = min; d(p, ¢;)

Equivalent statement: find minimum value R such that all points
can be covered with k discs of radius R.

Use any distance measure, if symmetric and satisfies triangle
inequality.

Greedy can be arbitrarily bad!

First center placed at best location
Next centers places to get best reduction of radius

k = 2 centers

n
ng ™
® L
greedy center 1 FL
L
@ center
W site

First center will be placed in the middle, R ~ 1/2 - maxDist

No matter where you place second center, R does not decrease
(one cluster still closer to first center)

But: could have placed centers within the two clusters.

Knowing Optimal Radius Helps

Center c* used in optimal solution

Circle of twice the radius at s
covers everything that c¢* covered.

Site s covered by c*

Figure 11.4 Everything covered at radius r by c* is also covered at radius 2r by s.

Choosing center in one of the given points gives factor-2 guarantee.

First step: assume optimal radius known

Let C =10

while P # () do
choose p € P, let C = C U {p} new center at p
delete from P all points at distance < 2r from p

if |C| < k then solution found

else there is no solution with radius < r

Correctness Proof

Any solution found has radius < 2r by design

Assume algorithm returns more than k centers.
Then any cover with < k centers has radius > r.

Proof by contradiction. Assume cover |C*| < k with radius r* < r

Each greedy center ¢ € C is covered by some close optimal center
c* € C*, with d(c, c*) < r*.

Each optimal center ¢* can't be close to two greedy centers c,c.
Triangle inequality would give

d(e,d) < d(e,c¢*) +d(c*,¢) <r*+r* <2r
but d(c,c’) > 2r since greedy algorithm eliminates closer points.

Thus, each greedy center ¢ has a distinct optimal center ¢*, and
|C| < |C*|, contradiction.

What if we don't know the optimal radius?

It's not reasonable to assume we know the solution

We know 0 < r* < mazDist between two points

Refine interval for covering radius by binary search.
Start with mazDist/2

Each try: there is a set with radius 2r or there is no set with radius r

But there is a greedy algorithm without knowing optimal radius!

Greedy Algorithm that Works

Original algorithm avoids overlap by choosing a new center that is
at least 2r away from all selected centers.

New: choose a center that is furthest away from all selected centers!

if & > |P| then return P
choose p € P, let C' = {p}
while |C] < & do
choose p € P maximizing d(p, C)

cC=CU{p
return C {r}

Claim: algorithm returns C with r(C) < 2r*
(at most twice optimal radius)

Correctness Proof

Similar argument: assume 7(C) > 2r*.

There must be a point p more than 2r* away from any center in C.

Claim: whenever the algorithm adds a center ¢ to current C’,
it is at least 2r* away from all selected centers
(because we choose the farthest, and p is > 2r* away):

d(d,C") > d(p,C") > d(p,C) > 2r*.

So our algorithm is a correct implementation of the previous one,
but that algorithm would still not have selected p after k iterations,
so no cover with radius < r* would exist, contradiction!

Can we do better? Not if P £ NP!

Theorem: If P # NP, there is no p-approximation with p < 2 for
center selection.

Proof: If so, could solve DOMINATING-SET in polyomial time.

DOMINATING-SET: each node covers itself and all connected nodes.
Is there a cover of size < k?

Construct center selection instance with same nodes. Set distances:
d(u,v) =1if (u,v) € E (edge in original graph)
d(u,v) = 2 otherwise

G has dominating set of size k iff G’ has k centers with radius 1.

A (2 — €)-approximation algorithm could find such a set, and thus
solve DOMINATING-SET in polynomial time!

