
COMPSCI 311 Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

28 January 2019

Algorithm Design

I Formulate the problem precisely

I Design an algorithm to solve the problem

I Prove the algorithm is correct

I Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm?
How many “primitive steps” are executed for an input of size n?

sum = 0
for i= 1 to n do

for j= 1 to n do
sum += A[i]*A[j]

end for
end for

The running time is
T (n) =? · n2+? · n+? .

What are the coefficients?

For large values of n, T (n) is less than some multiple of n2.
We say T (n) is O(n2) and typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function T (n) is O(f(n)) (read: “is order f(n)”)
if there exist constants c > 0 and n0 ≥ 0 such that

T (n) ≤ cf(n) for all n ≥ n0

We say that f is an asymptotic upper bound for T .

Example:
T (n) = 2n2 + n + 2

≤ 2n2 + n2 + 2n if n ≥ 1
T (n) ≤ 5︸︷︷︸

c

n2 if n ≥ 1︸︷︷︸
n0

So T (n) is O(n2)

Clicker Question 1

Claim n3 + 106n is O(n3)

To prove this we need to show that

n3 + 106n ≤ cn3 for all n ≥ n0

Which values of c and n0 make this inequality true?

A. c = 2, n0 = 1000

B. c = 101, n0 = 100

C. Both A and B

D. Neither A nor B

Big-O: Examples

I If T (n) = n2 + 1000000n then T (n) is O(n2)

c = 2, n0 = 106

I If T (n) = n3 + n log n then T (n) is O(n3)

c = 2, n0 = 1, since log n < n

I If T (n) = 2
√

log n then T (n) is O(n)

c = 1, n0 = 1, since
√

log n ≤ log n and 2logn = n

Big-O: Reviewing Definition

Big-O is a relation between two functions

f(n) = O(g(n) means ∃c > 0, n0 ≥ 0 : f(n) ≤ cg(n) for n ≥ n0.

There is no unique function g(n) so that f(n) = O(g(n))

Trivially, f(n) = O(f(n)): take c = 1, n0 = 0

We also have f(n) = O(1
2f(n)): take c = 2, n0 = 0

We also have f(n) = O(nf(n)); take c = 1, n0 = 1, etc.

Whether f(n) = O(g(n)) does not depend on
I multiplying f or g by a constant (we can choose c)
I the first 2 or 5 or 1000 etc. values (we can choose n0)

Clicker Question 2

Let f(n) = 3n2 + 4n log2 n + 5. Which of the following are true?

A. f(n) is O(n2)

B. f(n) is O(n2 log2 n)

C. Both A and B

D. Neither A nor B

How to Use Big-O
Analyze pseudocode to determine running time T (n) of algorithm as
a function of n:

T (n) = 2n2 + n + 2

Prove that T (n) is asymptotically upper-bounded by a simpler
function using definition of big-O:

T (n) = 2n2 + n + 2
≤ 2n2 + n2 + 2n2 if n ≥ 1
≤ 5n2 if n ≥ 1

This is right, but too much work. We will:
I prove properties of big-O that simplify finding big-O bounds,
I use these properties to take “shortcuts” when analyzing

algorithms

(you probably learned the shortcuts without formal justification).

Properties of Big-O: Transitivity

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Example:
I 2n2 + n + 1︸ ︷︷ ︸

f(n)

is O(n2
︸︷︷︸
g(n)

)

I n2
︸︷︷︸
g(n)

is O(n3
︸︷︷︸
h(n)

)

I Therefore, 2n2 + n + 1 is O(n3)

Transitivity Proof

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Proof: we know from the definition that
I f(n) ≤ cg(n) for all n ≥ n0
I g(n) ≤ c′h(n) for all n ≥ n′0

Therefore

f(n) ≤ cg(n) if n ≥ n0

≤ c(c′h(n)) if n ≥ n0 and n ≥ n′0
= cc′︸︷︷︸

c′′

h(n) if n ≥ max{n0, n′0}︸ ︷︷ ︸
n′′

0

f(n) ≤ c′′h(n) if n ≥ n′′0

Know how to do proofs using Big-O definition.

Properties of Big-O: Additivity

Claims (Additivity):
I If f is O(h) and g is O(h), then f + g is O(h).

3n2
︸︷︷︸

O(n5)

+ n4
︸︷︷︸

O(n5)

is O(n5)

I If f is O(g), then f + g is O(g)

n3
︸︷︷︸
g(n)

+ 23n + n log n︸ ︷︷ ︸
f(n)

is O(n3)

Using Additivity

I OK to drop lower order terms:

2n5 + 10n3 + 4n log n + 1000n is O(n5)

I Polynomials: Only highest-degree term matters. If ad > 0 then:

a0 + a1n + a2n2 + . . . + adnd is O(nd)

I You are using additivity when you ignore the running time of
statements outside for loops!

Other Useful Facts: Log vs. Poly vs. Exp

Fact: logb(n) is O(nd) for all b, d > 0

All polynomials grow faster than logarithm of any base

Fact: nd is O(rn) when r > 1

Exponential functions grow faster than polynomials

Logarithm review
Definition: logb(a) is the unique number c such that bc = a

Informally: the number of times you can divide a into b parts until
each part has size one

Properties:
I Log of product → sum of logs

I log(xy) = log x + log y
I log(xk) = k log x

I logb(·) is inverse of b(·)
I logb(bn) = n
I blogb(n) = n

I loga n = logab · logbn (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base.
Assume log2 if not specified.

Big-O comparison

Which grows faster?
n(log n)3 vs. n4/3

divide by common factor n, simplifies to:
(log n)3 vs. n1/3

take cubic root, simplifies to:
log n vs. n1/9

I We know log n is O(nd) for all d > 0
I ⇒ log n is O(n1/9)
I ⇒ n(log n)3 is O(n4/3)

Apply transformations (monotone, invertible) to both functions.
Try taking log.

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to
other functions.

Not: “the running time of my algorithm”.

Correct Usage:
I Worst-case running time of algorithm in input of size n is T (n).
I T (n) is O(n3).
I The running time of the algorithm is O(n3).

Incorrect Usage:
I O(n3) is the running time of the algorithm.

(There are many different asymptotic upper bounds to the
running time of the algorithm.)

Big-Ω Motivation

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Fact: run time is O(n3)

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time.
What is wrong?

More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

What is the running time of sum-product?

Easy to see it is O(n2). Could it be better? O(n)?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function T (n) is Ω(f(n)) if there exist constants
c > 0 and n0 ≥ 0 such that

T (n) ≥ cf(n) for all n ≥ n0

f is an asymptotic lower bound for T

Clicker Question 3

Which is an equivalent definition of big Omega notation?

A. f(n) is Ω(g(n)) if g(n) is O(f(n))

B. f(n) is Ω(g(n)) if for any n ≥ 0 there exists a constant c > 0
such that f(n) ≥ c · g(n)

C. Both A and B

D. Neither A nor B

Big-Ω Exercise

Let T (n) be the running time of sum-product.
Show that T (n) is Ω(n2)

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

Big-Ω: Solution

Hard way
I Count exactly how many times the loop executes

1 + 2 + . . . + n = n(n + 1)
2 = Ω(n2)

Easy way
I Ignore all loop executions where i > n/2 or j < n/2
I The inner statement executes at least (n/2)2 = Ω(n2) times

For Big-O, we can approximate upwards
For Ω, we can approximate downwards (ignore some computation)

