

Big-O: Reviewing Definition	Clicker Question 2
Big-O is a relation between two functions $f(n) = O(g(n) \text{ means } \exists c > 0, n_0 \ge 0 : f(n) \le cg(n) \text{ for } n \ge n_0.$ There is no unique function $g(n)$ so that $f(n) = O(g(n))$ Trivially, $f(n) = O(f(n))$: take $c = 1, n_0 = 0$ We also have $f(n) = O(\frac{1}{2}f(n))$: take $c = 2, n_0 = 0$ We also have $f(n) = O(nf(n))$; take $c = 1, n_0 = 1$, etc. Whether $f(n) = O(g(n))$ does not depend on \blacktriangleright multiplying f or g by a constant (we can choose c) \blacktriangleright the first 2 or 5 or 1000 etc. values (we can choose n_0)	Let $f(n) = 3n^2 + 4n \log_2 n + 5$. Which of the following are true? A. $f(n)$ is $O(n^2)$ B. $f(n)$ is $O(n^2 \log_2 n)$ C. Both A and B D. Neither A nor B
How to Use Big-O Analyze pseudocode to determine running time $T(n)$ of algorithm as a function of n : $T(n) = 2n^2 + n + 2$ Prove that $T(n)$ is asymptotically upper-bounded by a simpler function using definition of big-O: $T(n) = 2n^2 + n + 2$ $\leq 2n^2 + n^2 + 2n^2$ if $n \ge 1$ $\leq 5n^2$ if $n \ge 1$ This is right, but too much work. We will: > prove properties of big-O that simplify finding big-O bounds, > use these properties to take "shortcuts" when analyzing algorithms (you probably learned the shortcuts without formal justification).	Properties of Big-O: Transitivity Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$. Example: • $2n^2 + n + 1$ is $O(n^2)$ f(n) • $n^2_{g(n)}$ is $O(n^3)$ • Therefore, $2n^2 + n + 1$ is $O(n^3)$
Transitivity ProofClaim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.Proof: we know from the definition that $\blacktriangleright f(n) \leq cg(n)$ for all $n \geq n_0$ $\flat g(n) \leq c'h(n)$ for all $n \geq n_0$ Therefore $f(n) \leq cg(n)$ if $n \geq n_0$ and $n \geq n'_0$ $= cc'h(n)$ if $n \geq n_0$ and $n \geq n'_0$ $= cc'h(n)$ if $n \geq \max\{n_0, n'_0\}$ $f(n) \leq c''h(n)$ if $n \geq m'_0$ Know how to do proofs using Big-O definition.	Properties of Big-O: Additivity Claims (Additivity): If f is $O(h)$ and g is $O(h)$, then $f + g$ is $O(h)$. $\frac{3n^2}{O(n^5)} + \frac{n^4}{O(n^5)}$ is $O(n^5)$ If f is $O(g)$, then $f + g$ is $O(g)$ $\frac{n^3}{g(n)} + \frac{23n + n \log n}{f(n)}$ is $O(n^3)$

sing Additivity	Other Useful Facts: Log vs. Poly vs. Exp
 OK to drop lower order terms: 2n⁵ + 10n³ + 4n log n + 1000n is O(n⁵) Polynomials: Only highest-degree term matters. If a_d > 0 then: a₀ + a₁n + a₂n² + + a_dn^d is O(n^d) You are using additivity when you ignore the running time of statements outside for loops! 	Fact: $\log_b(n)$ is $O(n^d)$ for all $b, d > 0$ All polynomials grow faster than logarithm of any base Fact: n^d is $O(r^n)$ when $r > 1$ Exponential functions grow faster than polynomials
ogarithm review	Big-O comparison
Definition: $\log_b(a)$ is the unique number c such that $b^c = a$ Informally: the number of times you can divide a into b parts until each part has size one Properties: • Log of product \rightarrow sum of logs • $\log(xy) = \log x + \log y$ • $\log(x^k) = k \log x$ • $\log_b(\cdot)$ is inverse of $b^{(\cdot)}$ • $\log_b(b^n) = n$ • $b^{\log_b(n)} = n$ • $\log_a n = \log_a b \cdot \log_b n$ (logs in any two bases are proportional) When using big-O, it's OK not to specify base. Assume \log_2 if not specified.	Which grows faster? $n(\log n)^3$ vs. $n^{4/3}$ divide by common factor n , simplifies to: $(\log n)^3$ vs. $n^{1/3}$ take cubic root, simplifies to: $\log n$ vs. $n^{1/9}$ \blacktriangleright We know $\log n$ is $O(n^d)$ for all $d > 0$ $\triangleright \Rightarrow \log n$ is $O(n^{1/9})$ $\triangleright \Rightarrow n(\log n)^3$ is $O(n^{4/3})$ Apply transformations (monotone, invertible) to both functions. Try taking log.
 ig-O: Correct Usage Big-O: a way to categorize growth rate of functions relative to other functions. Not: "<i>the</i> running time of my algorithm". Correct Usage: Worst-case running time of algorithm in input of size n is T(n). T(n) is O(n³). The running time of the algorithm is O(n³). Incorrect Usage: O(n³) is <i>the</i> running time of the algorithm. (There are many different asymptotic upper bounds to the in the interview of the investor of the algorithm. 	Big- Ω MotivationAlgorithm foo for $i=1$ to n do for $j=1$ to n do do something end for end for Fact: run time is $O(n^3)$ Algorithm bar for $i=1$ to n do for $j=1$ to n do for $k=1$ to n do for k

More Big- Ω Motivation	$Big-\Omega$
Algorithm sum-product sum = 0 for $i=1$ to n do for $j=i$ to n do sum $+= A[i]*A[j]$ end for end for What is the running time of sum-product? Easy to see it is $O(n^2)$. Could it be better? $O(n)$?	Informally: T grows at least as fast as f Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \ge 0$ such that $T(n) \ge cf(n)$ for all $n \ge n_0$ f is an asymptotic lower bound for T
Clicker Question 3 Which is an equivalent definition of big Omega notation? A. $f(n)$ is $\Omega(g(n))$ if $g(n)$ is $O(f(n))$ B. $f(n)$ is $\Omega(g(n))$ if for any $n \ge 0$ there exists a constant $c > 0$ such that $f(n) \ge c \cdot g(n)$ C. Both A and B D. Neither A nor B	Big- Ω Exercise Let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$ Algorithm sum-product sum = 0 for $i=1$ to n do for $j=i$ to n do sum $+= A[i]^*A[j]$ end for end for

$\mathsf{Big-}\Omega : \ \mathsf{Solution}$

Hard way

Count exactly how many times the loop executes

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2} = \Omega(n^2)$$

Easy way

- ▶ Ignore all loop executions where i > n/2 or j < n/2
- \blacktriangleright The inner statement executes at least $(n/2)^2=\Omega(n^2)$ times

For Big-O, we can approximate upwards

For Ω , we can approximate downwards (ignore some computation)