COMPSCI 311 Introduction to Algorithms

Lecture 2: Asymptotic Notation and Efficiency

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

28 January 2019

Algorithm Design

» Formulate the problem precisely
» Design an algorithm to solve the problem
» Prove the algorithm is correct

» Analyze the algorithm's running time

Big-O: Motivation

What is the running time of this algorithm?
How many “primitive steps” are executed for an input of size n?

sum =0
for i=1ton do
for j=1ton do
sum += A[i]*A[j]
end for
end for

The running time is
T(n) =7 -n2+7-n+?.
What are the coefficients?

For large values of n, T'(n) is less than some multiple of n?.
We say T'(n) is O(n?) and typically don't care about other terms.

Big-O: Formal Definition

Definition: The function T'(n) is O(f(n)) (read: “is order f(n)")
if there exist constants ¢ > 0 and ng > 0 such that

T(n) < cf(n) for all n > ng

We say that f is an asymptotic upper bound for T'.

Example:
T(n) =2n%+n+2
<2n?+n?+2n ifn>1
T(n) < 5 n? if n >
~~

c no

So T(n) is O(n?)

Clicker Question 1

Claim n3 + 105n is O(n?)
To prove this we need to show that

n® +10% < cn® for all n > ng

Which values of ¢ and ny make this inequality true?
A. ¢ =2, ng = 1000
B. ¢ =101, ng = 100
C. Both A and B
D. Neither A nor B

Big-O: Examples

» If T'(n) = n?+ 1000000n then T'(n) is O(n?)
c=2,n9 =108

» If T(n) = n3 + nlogn then T(n) is O(n?)
c=2,n9=1, since logn <n

> If T'(n) = 2V1987 then T'(n) is O(n)

¢=1,n9 =1, since Iogn < logn and 2°8» = n,

Big-O: Reviewing Definition

Big-O is a relation between two functions

f(n) = O(g(n) means 3¢ > 0,n9 > 0: f(n) < cg(n) for n > ng.
There is no unique function g(n) so that f(n) = O(g(n))
Trivially, f(n) =O(f(n)): takec=1,n9=0

We also have f(n) = O(3f(n)): takec=2,mp=0

We also have f(n) = O(nf(n)); take ¢ = 1,n9 = 1, etc.

Whether f(n) = O(g(n)) does not depend on

> multiplying f or g by a constant (we can choose c)
> the first 2 or 5 or 1000 etc. values (we can choose ng)

Clicker Question 2

Let f(n) = 3n% 4 4nlogyn + 5. Which of the following are true?

A. f(n)is O(n?)

B. f(n)is O(n?logyn)
C. Both A and B

D. Neither A nor B

How to Use Big-O
Analyze pseudocode to determine running time T'(n) of algorithm as
a function of n:
T(n) =2n%+n+2

Prove that T'(n) is asymptotically upper-bounded by a simpler
function using definition of big-O:

T(n)=2n>+n+2
<oam’+4+n?+2n? ifn>1
< 5n? ifn>1

This is right, but too much work. We will:

> prove properties of big-O that simplify finding big-O bounds,

» use these properties to take “shortcuts” when analyzing
algorithms

(you probably learned the shortcuts without formal justification).

Properties of Big-O: Transitivity

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).
Example:
2 . 2
> 2n°+n+1 |sO(lL/)
f(n) g(n)

> n? isO(n?)
—~ —
g(n) h(n)

» Therefore, 2n2 +n + 1 is O(n3)

Transitivity Proof
Claim (Transitivity): If f is O(g) and g is O(h), then fis O(h).

Proof: we know from the definition that

> f(n) <cg(n) for all n > ng
> g(n) < dh(n) for all n > ny

Therefore

< cg(n) if n > ng
<c(dh(n)) ifn>ngandn>n

= cc h(n) if n>max{ng,ny}
nf
Fn) < h(w) 0> nf

Know how to do proofs using Big-O definition.

Properties of Big-O: Additivity

Claims (Additivity):
» If fis O(h) and g is O(h), then f + g is O(h).
3n2 4+ nt is O(m®)

n
~ =~
(n5) O(nd)

o)

> If fis O(g), then f+gis O(g)

\ni+ 23n + nlogn is O(n®)
g(n) f(n)

Using Additivity

» OK to drop lower order terms:

2n° + 101 + 4nlogn + 1000n is O(n°)

» Polynomials: Only highest-degree term matters. If ag > 0 then:

ap + a1n + asn® + ... +agn® is O(nd)

» You are using additivity when you ignore the running time of
statements outside for loops!

Other Useful Facts: Log vs. Poly vs. Exp

Fact: log,(n) is O(n?) for all b,d > 0

All polynomials grow faster than logarithm of any base

Fact: n¢ is O(r") when r > 1

Exponential functions grow faster than polynomials

Logarithm review

Definition: logy(a) is the unique number ¢ such that 0 = a

Informally: the number of times you can divide a into b parts until
each part has size one

Properties:

» Log of product — sum of logs
> log(zy) = logx + logy
> log(z*) = klogx

> log,(-) is inverse of b()
> log,(b") =n
> blogb(n) —n
> log,n = logab - logyn (logs in any two bases are proportional)

When using big-O, it's OK not to specify base.
Assume log, if not specified.

Big-O comparison

Which grows faster?
n(logn)® vs. n%/3

divide by common factor n, simplifies to:
(logn)® vs. n'/3

take cubic root, simplifies to:

logn vs. nl/9

> We know logn is O(n?) for all d > 0
> = logn is O(n'/?)
> = n(logn)?® is O(n*/3)

Apply transformations (monotone, invertible) to both functions.
Try taking log.

Big-O: Correct Usage
Big-0O: a way to categorize growth rate of functions relative to
other functions.

Not: “the running time of my algorithm”.

Correct Usage:

» Worst-case running time of algorithm in input of size n is T'(n).

> T(n)is O(n?).
» The running time of the algorithm is O(n?).

Incorrect Usage:

> O(n®) is the running time of the algorithm.
(There are many different asymptotic upper bounds to the
running time of the algorithm.)

Big-2 Motivation

Algorithm bar
Algorithm foo
for i=1ton do
for j=1ton do
do something...

for i=1ton do
for j=1ton do
for k=1 ton do
do something else..

end for end for
end for end for
end for

Fact: run time is O(n?)
Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time.
What is wrong?

More Big-{2 Motivation

Algorithm sum-product
sum =0
for i=1ton do
for j=itondo
sum += A[i]*A[j]
end for
end for

What is the running time of sum-product?

Easy to see it is O(n?). Could it be better? O(n)?

Big-

Informally: T" grows at least as fast as f

Definition: The function T'(n) is Q(f(n)) if there exist constants
¢ > 0 and ng > 0 such that

T(n) > cf(n) for all n > ng

f is an asymptotic lower bound for T'

Clicker Question 3

Which is an equivalent definition of big Omega notation?
A. f(n)is Qg(n)) if g(n) is O(f(n))

B. f(n)is Q(g(n)) if for any n > 0 there exists a constant ¢ > 0
such that f(n) > c- g(n)

C. Both A and B
D. Neither A nor B

Big-{2 Exercise

Let T'(n) be the running time of sum-product.
Show that T'(n) is Q(n?)

Algorithm sum-product
sum =0
for i=1ton do
for j=1iton do
sum += A[i]*A[j]
end for
end for

Big-{2: Solution

Hard way
» Count exactly how many times the loop executes

n(n+1)

1+2+... =
+2+...+n)

= Q(n?)
Easy way

» Ignore all loop executions where i > n/2 or j < n/2
> The inner statement executes at least (n/2)? = Q(n?) times

For Big-O, we can approximate upwards
For ©, we can approximate downwards (ignore some computation)

