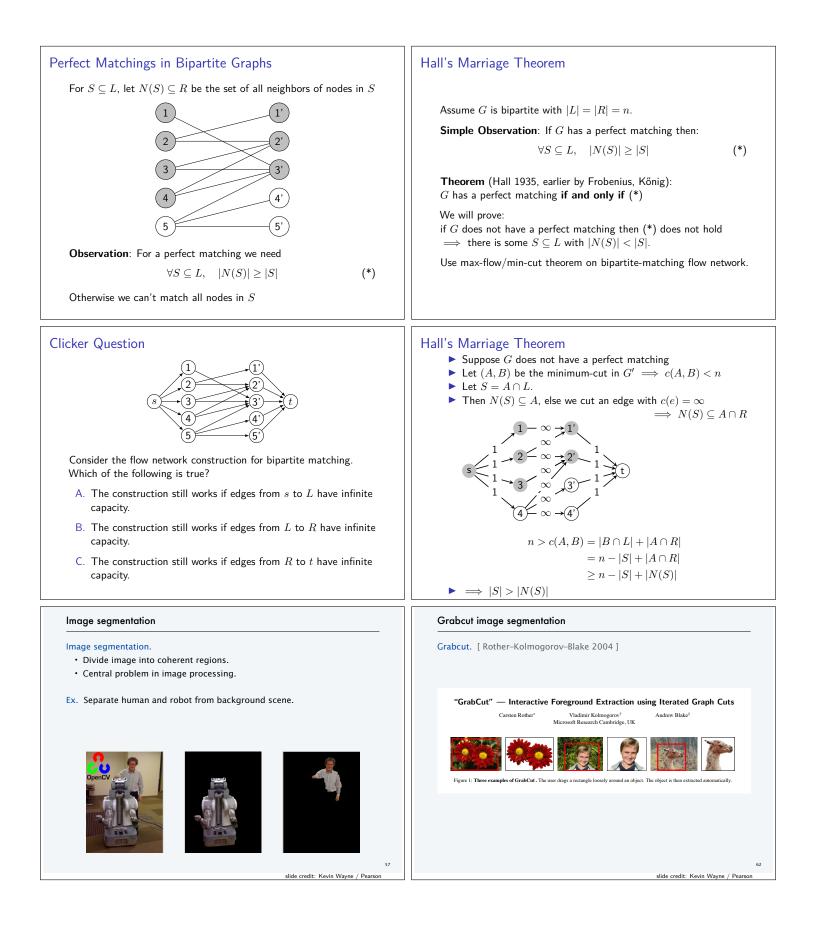


licker Question	Maximum Matching: Analysis
 Let G' be the flow network as constructed above and let e be an edge from L to R. A. For every flow f, either f(e) = 0 or f(e) = 1. B. For every maximum flow f, either f(e) = 0 or f(e) = 1. C. There is some maximum flow f such that either f(e) = 0 or f(e) = 1. D. B and C E. A, B, and C 	 Run F-F to get an integral max-flow f Set M to the set of edges from L to R with flow f(e) = 1 Claim: The set M is a maximum matching. Correctness: We will show that: for every integer flow of value k there is a matching M of size k and vice versa. Therefore, a maximum integer-valued flow yields a maximum matching.
Correctness 1	Correctness 2
 Integral flow f of value k ⇒ matching M of size k Suppose f is a flow of value k Let M = edges from L to R carrying one unit of flow There are k such edges, because the net flow across cut between L and R is k, and there are no edges from R to L There is at most 1 unit of flow entering u ∈ L, and therefore at most 1 unit of flow leaving u Since all flow values are 0 or 1, this means M has at most one edge incident to u. A similar argument for v ∈ L means that M has at most one edge incident to v Therefore, M is a matching with size k 	 2. Matching M of size k ⇒ integral flow f of value k Suppose M is a matching of size k Send one unit of flow from s to u ∈ L if u is matched Send one unit of flow from v ∈ R to t if t is matched Sent one unit of flow on e if e is in M All other edge flow values are zero Verify that capacity and flow conservation constraints are satisfied, and that v(f) = k.
Clicker Question	Perfect Matchings in Bipartite Graphs
What is the running time of the Ford-Fulkerson algorithm to find a maximum matching in a bipartite graph with $ L = R = n$? (Assume each node has at least one incident edge) A. $O(m + n)$ B. $O(mn)$ C. $O(mn^2)$ D. $O(m^2n)$	 Recall: A matching M is perfect if every node appears in (exactly) one edge in M. Question: When does a bipartite graph have a perfect matching? Clearly, we must have L = R Clearly, every node must have at least one edge What other conditions are necessary? Sufficient?



Bokeh Effect: Blurring Background

- Using an expensive camera and appropriate lenses, you can get a "bokeh" effect on portrait photos:
 - the background is blurred and the foreground is in focus.

 Can fake effect using cheap phone cameras and appropriate software

Image Segmentation as Network Flow

Maximize correct labeling scores, minimize penalties

Let A: set of pixels labeled foreground, B: pixels in background

Maximize:
$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$$

Insight: (A, B) is a partition \Rightarrow forms a **cut**

First sum is $\sum_{i\in V}(a_i+b_i)-\sum_{i\in A}b_i-\sum_{j\in B}a_j$ (constant minus "penalties" for mislabeling)

Must minimize $\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$

 \Rightarrow find **minimum cut**

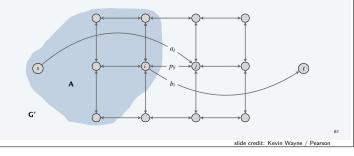
Image segmentation

• 4 - foreground

Consider min cut (A, B) in G'.

$$ap(A,B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ i \in A, i \in B}} p_{ij} \quad \text{if } i \text{ and } j \text{ on different}}$$

• Precisely the quantity we want to minimize.



sides

Formulating the Problem

Given set \boldsymbol{V} of pixels, classify each as foreground or background. Assume you have:

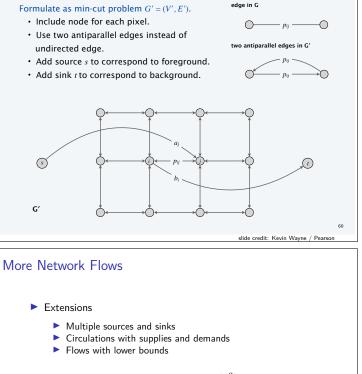
- Likelihood that a pixel is in foreground (a_i) / background (b_i)
- \blacktriangleright Numeric penalty p_{ij} for assigning neighboring pixels i and j to different classes

Graph edges E: for each pixel, edge to neighbors (4? 8? other?)

Criteria:

- Accuracy if $a_i > b_i$, would prefer to label pixel *i* as foreground
- Smoothness: if many neighbors are labeled the same (foreground), would like to label pixel *i* as foreground (minimize penalties)

Image segmentation



lmproved Algorithms: Preflow-push $O(n^3)$

Applications

- Network connectivity
- Data mining: survey design
- Airline scheduling
- Baseball elimination
- Multi-camera placement / scene reconstruction