
COMPSCI 311: Introduction to Algorithms
Lecture 19: Network Flow Applications

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

3 April 2019

Review: Network Flow Properties
I v(f) ≤ c(A, B) for any flow f and any s-t cut c(A, B)

(flow value lemma)

I On termination, Ford-Fulkerson defines an s− t cut (A, B)
in the residual graph (A = all nodes reachable from s)
all edges out of A across the cut are saturated
all edges into A across the cut carry no flow

I Max flow equals min cut
Ford-Fulkerson gives a max flow, and (A, B) is a min-cut.

Complexity
I Basic F-F: O(mnCmax) pseudo-polynomial

I Capacity-scaling: O(m2 log Cmax) polynomial

I Edmonds-Karp O(m2n), Dinitz O(mn2) strongly-polynomial

Network Flow Application: Matching in Graphs

I In an undirected graph G = (V, e), a set of edges M ⊆ E is a
matching if no two edges in M have a common node.

I The maximum matching problem is to find the matching with
the most edges.

I How to find some matching?
I choose an edge
I delete all edges with common endpoints
I repeat

When done, matching cannot be extended, i.e., maximal
(different from maximum: highest number).
I We’ll design an efficient algorithm for maximum matching in a

bipartite graph.

Bipartite Matching

Recall: A graph is bipartite if we can partition nodes in two sets L
and R, so each edge connects a node in L with a node in R.

Problem: Given bipartite graph G = (L ∪R, E), find a maximum
cardinality matching.

1

2

3

4

5

1’

2’

3’

4’

5’

Formulating Matching as Network Flow problem

I Goal: given matching instance G = (L ∪R, E):
I create a flow network G′,
I find a maximum flow f in G′

I use f to construct a maximum matching M in G.

I Exercise

I Convert undirected bipartite graph G to flow network G′

I Direction of edges?
I Capacities?
I Source and sink?

Maximal Matching as Network Flow

I Add a source s and sink t
I For each edge (u, v) ∈ E, add u→ v (directed), capacity 1
I Add an edge with capacity 1 from s to each node u ∈ L
I Add an edge with capacity 1 from each node v ∈ R to t.

s t

1

2

3

4

5

1’

2’

3’

4’

5’



Clicker Question

Let G′ be the flow network as constructed above and let e be an
edge from L to R.

A. For every flow f , either f(e) = 0 or f(e) = 1.

B. For every maximum flow f , either f(e) = 0 or f(e) = 1.

C. There is some maximum flow f such that either f(e) = 0 or
f(e) = 1.

D. B and C

E. A, B, and C

Maximum Matching: Analysis

I Run F-F to get an integral max-flow f
I Set M to the set of edges from L to R with flow f(e) = 1
I Claim: The set M is a maximum matching.

Correctness: We will show that:
I for every integer flow of value k there is a matching M of size k
I and vice versa.

Therefore, a maximum integer-valued flow yields a maximum
matching.

Correctness 1

1. Integral flow f of value k ⇒ matching M of size k

I Suppose f is a flow of value k
I Let M = edges from L to R carrying one unit of flow
I There are k such edges, because the net flow across cut

between L and R is k, and there are no edges from R to L
I There is at most 1 unit of flow entering u ∈ L, and therefore

at most 1 unit of flow leaving u
I Since all flow values are 0 or 1, this means M has at most one

edge incident to u.
I A similar argument for v ∈ L means that M has at most one

edge incident to v
I Therefore, M is a matching with size k

Correctness 2

2. Matching M of size k ⇒ integral flow f of value k

I Suppose M is a matching of size k
I Send one unit of flow from s to u ∈ L if u is matched
I Send one unit of flow from v ∈ R to t if t is matched
I Sent one unit of flow on e if e is in M
I All other edge flow values are zero
I Verify that capacity and flow conservation constraints are

satisfied, and that v(f) = k.

Clicker Question

What is the running time of the Ford-Fulkerson algorithm to find a
maximum matching in a bipartite graph with |L| = |R| = n ?
(Assume each node has at least one incident edge)

A. O(m + n)

B. O(mn)

C. O(mn2)

D. O(m2n)

Perfect Matchings in Bipartite Graphs

Recall: A matching M is perfect if every node appears in (exactly)
one edge in M .

Question: When does a bipartite graph have a perfect matching?
I Clearly, we must have |L| = |R|
I Clearly, every node must have at least one edge
I What other conditions are necessary? Sufficient?



Perfect Matchings in Bipartite Graphs
For S ⊆ L, let N(S) ⊆ R be the set of all neighbors of nodes in S

1

2

3

4

5

1’

2’

3’

4’

5’

Observation: For a perfect matching we need
∀S ⊆ L, |N(S)| ≥ |S| (*)

Otherwise we can’t match all nodes in S

Hall’s Marriage Theorem

Assume G is bipartite with |L| = |R| = n.

Simple Observation: If G has a perfect matching then:
∀S ⊆ L, |N(S)| ≥ |S| (*)

Theorem (Hall 1935, earlier by Frobenius, Kőnig):
G has a perfect matching if and only if (*)

We will prove:
if G does not have a perfect matching then (*) does not hold
=⇒ there is some S ⊆ L with |N(S)| < |S|.
Use max-flow/min-cut theorem on bipartite-matching flow network.

Clicker Question

s t

1
2
3
4
5

1’
2’
3’
4’
5’

Consider the flow network construction for bipartite matching.
Which of the following is true?

A. The construction still works if edges from s to L have infinite
capacity.

B. The construction still works if edges from L to R have infinite
capacity.

C. The construction still works if edges from R to t have infinite
capacity.

Hall’s Marriage Theorem
I Suppose G does not have a perfect matching
I Let (A, B) be the minimum-cut in G′ =⇒ c(A, B) < n
I Let S = A ∩ L.
I Then N(S) ⊆ A, else we cut an edge with c(e) =∞

=⇒ N(S) ⊆ A ∩R

s

1

2

3

1’

2’

4

3’

4’

t

1
1
1
1

1
1
1
1

∞
∞
∞
∞∞
∞
∞
∞

n > c(A, B) = |B ∩ L|+ |A ∩R|
= n− |S|+ |A ∩R|
≥ n− |S|+ |N(S)|

I =⇒ |S| > |N(S)|

Image segmentation

Image segmentation. 

独Divide image into coherent regions. 

独Central problem in image processing. 

 
Ex.  Separate human and robot from background scene.

 57

slide credit: Kevin Wayne / Pearson

Grabcut.  [ Rother–Kolmogorov–Blake 2004 ]

Grabcut image segmentation

 62

“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother∗ Vladimir Kolmogorov†
Microsoft Research Cambridge, UK

Andrew Blake‡

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.

Abstract

The problem of efficient, interactive foreground/background seg-
mentation in still images is of great practical importance in im-
age editing. Classical image segmentation tools use either texture
(colour) information, e.g. Magic Wand, or edge (contrast) infor-
mation, e.g. Intelligent Scissors. Recently, an approach based on
optimization by graph-cut has been developed which successfully
combines both types of information. In this paper we extend the
graph-cut approach in three respects. First, we have developed a
more powerful, iterative version of the optimisation. Secondly, the
power of the iterative algorithm is used to simplify substantially the
user interaction needed for a given quality of result. Thirdly, a ro-
bust algorithm for “border matting” has been developed to estimate
simultaneously the alpha-matte around an object boundary and the
colours of foreground pixels. We show that for moderately difficult
examples the proposed method outperforms competitive tools.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; I.4.6 [Im-
age Processing and Computer Vision]: Segmentation—Pixel clas-
sification; partitioning

Keywords: Interactive Image Segmentation, Graph Cuts, Image
Editing, Foreground extraction, Alpha Matting

1 Introduction

This paper addresses the problem of efficient, interactive extrac-
tion of a foreground object in a complex environment whose back-
ground cannot be trivially subtracted. The resulting foreground ob-
ject is an alpha-matte which reflects the proportion of foreground
and background. The aim is to achieve high performance at the
cost of only modest interactive effort on the part of the user. High
performance in this task includes: accurate segmentation of object
from background; subjectively convincing alpha values, in response
to blur, mixed pixels and transparency; clean foreground colour,

∗e-mail: carrot@microsoft.com
†e-mail: vnk@microsoft.com
‡e-mail: ablake@microsoft.com

free of colour bleeding from the source background. In general,
degrees of interactive effort range from editing individual pixels, at
the labour-intensive extreme, to merely touching foreground and/or
background in a few locations.

1.1 Previous approaches to interactive matting

In the following we describe briefly and compare several state of
the art interactive tools for segmentation: Magic Wand, Intelligent
Scissors, Graph Cut and Level Sets and for matting: Bayes Matting
and Knockout. Fig. 2 shows their results on a matting task, together
with degree of user interaction required to achieve those results.

Magic Wand starts with a user-specified point or region to com-
pute a region of connected pixels such that all the selected pixels
fall within some adjustable tolerance of the colour statistics of the
specified region. While the user interface is straightforward, finding
the correct tolerance level is often cumbersome and sometimes im-
possible. Fig. 2a shows the result using Magic Wand from Adobe
Photoshop 7 [Adobe Systems Incorp. 2002]. Because the distri-
bution in colour space of foreground and background pixels have a
considerable overlap, a satisfactory segmentation is not achieved.

Intelligent Scissors (a.k.a. Live Wire or Magnetic Lasso)
[Mortensen and Barrett 1995] allows a user to choose a “minimum
cost contour” by roughly tracing the object’s boundary with the
mouse. As the mouse moves, the minimum cost path from the cur-
sor position back to the last “seed” point is shown. If the computed
path deviates from the desired one, additional user-specified “seed”
points are necessary. In fig. 2b the Magnetic Lasso of Photoshop 7
was used. The main limitation of this tool is apparent: for highly
texture (or un-textured) regions many alternative “minimal” paths
exist. Therefore many user interactions (here 19) were necessary to
obtain a satisfactory result. Snakes or Active Contours are a related
approach for automatic refinement of a lasso [Kass et al. 1987].

Bayes matting models colour distributions probabilistically to
achieve full alpha mattes [Chuang et al. 2001] which is based on
[Ruzon and Tomasi 2000]. The user specifies a “trimap” T =
{TB,TU ,TF} in which background and foreground regions TB and
TF are marked, and alpha values are computed over the remain-
ing region TU . High quality mattes can often be obtained (fig.
2c), but only when the TU region is not too large and the back-
ground/foreground colour distributions are sufficiently well sepa-
rated. A considerable degree of user interaction is required to con-
struct an internal and an external path.

Knockout 2 [Corel Corporation 2002] is a proprietary plug-in for
Photoshop which is driven from a user-defined trimap, like Bayes
matting, and its results are sometimes similar (fig. 2d), sometimes
of less quality according to [Chuang et al. 2001].

slide credit: Kevin Wayne / Pearson



Bokeh Effect: Blurring Background
I Using an expensive camera and appropriate lenses, you can get

a “bokeh" effect on portrait photos:
the background is blurred and the foreground is in focus.

I Can fake effect using cheap phone cameras and appropriate
software

Formulating the Problem

Given set V of pixels, classify each as foreground or background.
Assume you have:
I Likelihood that a pixel is in foreground (ai) / background (bi)
I Numeric penalty pij for assigning neighboring pixels i and j to

different classes

Graph edges E: for each pixel, edge to neighbors (4? 8? other?)

Criteria:
I Accuracy if ai > bi, would prefer to label pixel i as foreground

I Smoothness: if many neighbors are labeled the same
(foreground), would like to label pixel i as foreground
(minimize penalties)

Image Segmentation as Network Flow

Maximize correct labeling scores, minimize penalties

Let A: set of pixels labeled foreground, B: pixels in background

Maximize:
∑

i∈A

ai +
∑

j∈B

bj −
∑

(i,j)∈E,i∈A,j∈B

pij

Insight: (A, B) is a partition ⇒ forms a cut

First sum is ∑
i∈V (ai + bi)−

∑
i∈A bi −

∑
j∈B aj

(constant minus “penalties” for mislabeling)

Must minimize
∑

i∈A

bi +
∑

j∈B

aj +
∑

(i,j)∈E,i∈A,j∈B

pij

⇒ find minimum cut

Image segmentation

Formulate as min-cut problem G ʹ = (V ʹ, E ʹ). 

独Include node for each pixel. 

独Use two antiparallel edges instead of 
undirected edge.  

独Add source s to correspond to foreground. 

独Add sink t to correspond to background.

 60

s ti j

G′

pij

pij

pij

pij

aj

bi

two antiparallel edges in G′

edge in G

slide credit: Kevin Wayne / Pearson

Image segmentation

Consider min cut (A, B) in G ʹ. 

独 A = foreground. 
 
 

独Precisely the quantity we want to minimize.

 61

s ti j

G′

A

if i and j on different sides, 
pij counted exactly once

cap(A, B) =
�

j�B

aj +
�

i�A

bi +
�

(i,j)�E

i�A, j�B

pij

<latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM=">AAACvHicbVHtatswFJW9ry77aNr9HIzLwlhKQ7DLxgplo+0Y7GcHS1uIjZHlm1aJJBtJLg3GL7G325vs5xTbgybdBUmHc+6X7k0LwY0Ngt+e/+Dho8dPtp72nj1/8XK7v7N7bvJSM5ywXOT6MqUGBVc4sdwKvCw0UpkKvEgXX1f6xQ1qw3P10y4LjCW9UnzGGbWOSvq/GC2GJyM43YPoKDqCz+0TmVIm1RwiruC0BprMG34f7sq8kU9qSBPe8vu9VnF3aixli2rIRzDfaxy/QRRNxwcfUcbQhY5cGPyrUkPhcs7rpD8IxkFjcB+EHRiQzs6SHW83ynJWSlSWCWrMNAwKG1dUW84E1r2oNFi4bugVTh1UVKKJq2Z4NbxzTAazXLujLDTs3YiKSmOWMnWektprs6mtyP9p09LODuOKq6K0qFhbaFYKsDmsNgEZ18isWDpAmeauV2DXVFNm3b7WqjS5C2RrP6luS8VZnuEGK+yt1XQ1xXBzZvfB+cE4DMbhjw+D48NunlvkNXlLhiQkn8gx+U7OyIQw8sd74733hv4XP/MXvmxdfa+LeUXWzL/5CybL0fU=</latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM=">AAACvHicbVHtatswFJW9ry77aNr9HIzLwlhKQ7DLxgplo+0Y7GcHS1uIjZHlm1aJJBtJLg3GL7G325vs5xTbgybdBUmHc+6X7k0LwY0Ngt+e/+Dho8dPtp72nj1/8XK7v7N7bvJSM5ywXOT6MqUGBVc4sdwKvCw0UpkKvEgXX1f6xQ1qw3P10y4LjCW9UnzGGbWOSvq/GC2GJyM43YPoKDqCz+0TmVIm1RwiruC0BprMG34f7sq8kU9qSBPe8vu9VnF3aixli2rIRzDfaxy/QRRNxwcfUcbQhY5cGPyrUkPhcs7rpD8IxkFjcB+EHRiQzs6SHW83ynJWSlSWCWrMNAwKG1dUW84E1r2oNFi4bugVTh1UVKKJq2Z4NbxzTAazXLujLDTs3YiKSmOWMnWektprs6mtyP9p09LODuOKq6K0qFhbaFYKsDmsNgEZ18isWDpAmeauV2DXVFNm3b7WqjS5C2RrP6luS8VZnuEGK+yt1XQ1xXBzZvfB+cE4DMbhjw+D48NunlvkNXlLhiQkn8gx+U7OyIQw8sd74733hv4XP/MXvmxdfa+LeUXWzL/5CybL0fU=</latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM=">AAACvHicbVHtatswFJW9ry77aNr9HIzLwlhKQ7DLxgplo+0Y7GcHS1uIjZHlm1aJJBtJLg3GL7G325vs5xTbgybdBUmHc+6X7k0LwY0Ngt+e/+Dho8dPtp72nj1/8XK7v7N7bvJSM5ywXOT6MqUGBVc4sdwKvCw0UpkKvEgXX1f6xQ1qw3P10y4LjCW9UnzGGbWOSvq/GC2GJyM43YPoKDqCz+0TmVIm1RwiruC0BprMG34f7sq8kU9qSBPe8vu9VnF3aixli2rIRzDfaxy/QRRNxwcfUcbQhY5cGPyrUkPhcs7rpD8IxkFjcB+EHRiQzs6SHW83ynJWSlSWCWrMNAwKG1dUW84E1r2oNFi4bugVTh1UVKKJq2Z4NbxzTAazXLujLDTs3YiKSmOWMnWektprs6mtyP9p09LODuOKq6K0qFhbaFYKsDmsNgEZ18isWDpAmeauV2DXVFNm3b7WqjS5C2RrP6luS8VZnuEGK+yt1XQ1xXBzZvfB+cE4DMbhjw+D48NunlvkNXlLhiQkn8gx+U7OyIQw8sd74733hv4XP/MXvmxdfa+LeUXWzL/5CybL0fU=</latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM=">AAACvHicbVHtatswFJW9ry77aNr9HIzLwlhKQ7DLxgplo+0Y7GcHS1uIjZHlm1aJJBtJLg3GL7G325vs5xTbgybdBUmHc+6X7k0LwY0Ngt+e/+Dho8dPtp72nj1/8XK7v7N7bvJSM5ywXOT6MqUGBVc4sdwKvCw0UpkKvEgXX1f6xQ1qw3P10y4LjCW9UnzGGbWOSvq/GC2GJyM43YPoKDqCz+0TmVIm1RwiruC0BprMG34f7sq8kU9qSBPe8vu9VnF3aixli2rIRzDfaxy/QRRNxwcfUcbQhY5cGPyrUkPhcs7rpD8IxkFjcB+EHRiQzs6SHW83ynJWSlSWCWrMNAwKG1dUW84E1r2oNFi4bugVTh1UVKKJq2Z4NbxzTAazXLujLDTs3YiKSmOWMnWektprs6mtyP9p09LODuOKq6K0qFhbaFYKsDmsNgEZ18isWDpAmeauV2DXVFNm3b7WqjS5C2RrP6luS8VZnuEGK+yt1XQ1xXBzZvfB+cE4DMbhjw+D48NunlvkNXlLhiQkn8gx+U7OyIQw8sd74733hv4XP/MXvmxdfa+LeUXWzL/5CybL0fU=</latexit>

pij

aj

bi

slide credit: Kevin Wayne / Pearson

More Network Flows

I Extensions
I Multiple sources and sinks
I Circulations with supplies and demands
I Flows with lower bounds

I Improved Algorithms: Preflow-push O(n3)

I Applications
I Network connectivity
I Data mining: survey design
I Airline scheduling
I Baseball elimination
I Multi-camera placement / scene reconstruction


