
COMPSCI 311: Introduction to Algorithms
Lecture 18: Network Flow

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

1 April 2019

Review: Augmenting Flows

residual graph; edges: forward (difference), reverse (existing flow)

augmenting path: s t in residual graph, bottleneck capacity

ts

u

v

2/2 0/1

0/1

2/3

2/2

G

ts

u

v

2

1

1

2

21

Gf

ts

u

v

2/2 1/1

1/1

1/3

2/2

new flow

Review: Ford-Fulkerson Algorithm

. Augment flow as long as it is possible
while there exists an s-t path P in residual graph Gf do

f = Augment(f , P)
update Gf

end while
return f

Correctness: relate maximum flow to minimum cut

We’ve seen:

1. Algorithm returns a flow (capacity constraints + flow
conservation)

2. Algorithm terminates (steps: at most value of flow)

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows
and cuts in graphs: the max-flow min-cut theorem.
I An s-t cut (A, B) is a partition of the nodes into sets A and B

where s ∈ A, t ∈ B
I Capacity of cut (A, B) equals

c(A, B) =
∑

e **from** A to B

c(e)

I Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Example of Cut

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Exercise: write capacity of cut and flow across cut.

Capacity is 29 and flow across cut is 19.

Clicker Question
What is the capacity of the cut and the flow across the cut?

Capacity Flow
A. 16+4+9+14 11+1+3+11
B. 16+4 -9+14 11+1 -4+11
C. 16+4+14 11+1 -4+11
D. 16+4+14 11+1+11

v1 v2

v3 v4

ts

11/16

8/13

11/14

4/9

12/12

1/4
7/7

15/20

4/4

Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A, B) be any s-t cut. Then

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Proof (see book) use conservation of flow:
all the flow out of s must leave A eventually.

Rewrite flow as v(f) = ∑
v∈A fout(v)− f in(v)

only nonzero difference is f(s)

Consider cases: edge in A, leading out of A, leading into A

Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let f be any s-t flow and let (A, B) be any s-t cut.
Then v(f) ≤ c(A, B).

Proof:
v(f) =

∑

e out of A

f(e)−
∑

e into A

f(e)

≤
∑

e out of A

f(e)

≤
∑

e out of A

c(e)

= c(A, B)

Duality: Max Flow – Min Cut

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut. 
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

 
Pf.

・For any flow f ʹ: val(f ʹ) ≤ cap(A, B) = val(f).

・For any cut (Aʹ, Bʹ): cap(Aʹ, Bʹ) ≥ val(f) = cap(A, B). ▪

 31

s t

0 / 4

10 /
10

10 / 105 / 5

8 / 10

8 / 9

8 / 8

2 / 15

10 /
10

13 / 15

0 / 4

3 / 6

13 / 16

0 / 15

0 / 15

s

10

8 t

10

weak duality

value of flow = 28 capacity of cut = 28=

weak duality

Claim If there is a flow f∗ and cut (A∗, B∗) such that
v(f∗) = c(A∗, B∗), then
I f∗ is a maximum flow
I (A∗, B∗) is a minimum cut

Clicker

Suppose f is a flow, and there is a path from s to u in Gf , but no
path from s to v in Gf . Then

A. There is no edge from u to v in G.

B. If there is an edge from u to v in G then f does not send any
flow on this edge.

C. If there is an edge from u to v in G then f fully saturates it
with flow.

D. None of the above.

Clicker

Suppose f is a flow, and there is a path from s to u in Gf , but no
path from s to v in Gf . Then

A. There is no edge from v to u in G.

B. If there is an edge from v to u in G then f does not send any
flow on this edge.

C. If there is an edge from v to u in G then f fully saturates it
with flow.

D. None of the above.

F-F returns a maximum flow

Theorem: The s-t flow f returned by F-F is a maximum flow.

I Since f is the final flow there are no residual paths in Gf .
I Let (A, B) be the s-t cut where A consists of all nodes

reachable from s in the residual graph.
I Any edge out of A must have f(e) = c(e) otherwise there

would be more nodes than just A that reachable from s.
I Any edge into A must have f(e) = 0 otherwise there would be

more nodes than just A that reachable from s.

I Therefore v(f) =
∑

e out ofA
f(e)−

∑

e intoA

f(e)

=
∑

e out ofA
c(e) = c(A, B)

F-F finds a minimum cut
Theorem: The cut (A, B) where A is the set of all nodes reachable
from s in the residual graph is a minimum-cut.

Gf

v1 v2

v3 v4

ts

11

5

1

12

31
9

3

11

7
1

19

4

12

G

v1 v2

v3 v4

ts

11/16

12/13

11/14

0/9

12/12

1/4
7/7

19/20

4/4

F-F finds a minimum cut

Capacity 163,000 tons per day [Harris and Ross 1955]

Ford-Fulkerson Running Time

I Flow increases at least one unit per iteration
I F-F terminates in at most Cs iterations, where Cs is sum of

capacities leaving source.
I Cs ≤ n Cmax (in terms of maximum edge capacity)
I Running time: O(m n Cmax)

Is this polynomial? pseudo-polynomial (exponential in log Cmax)

Running-Time Example

s

u

v

t

C

C

C

C

1

What is the smallest number of
augment operations with which
Ford-Fulkerson can find a
maximum-flow in this graph?
A. 1
B. 2
C. 3
D. C

Improving Running Time

s

u

v

t

C

C

C

C

1

Good path choice will find:
s→ u→ t, flow C
s→ v → t, flow C

Worst-case: keep incrementing by 1:
s→ u→ v → t, flow 1
s→ v → u→ t, flow 1
s→ u→ v → t, flow 1
. . .

Solution: choose good augmenting paths, with
I Large enough bottleneck capacity: capacity-scaling algorithm
I Fewest edges: Edmonds-Karp, Dinitz

Capacity-scaling algorithm

Idea: ignore edges with small capacity at first

s

u

v

t

107

105

102

108

1

original residual graph Gf

s

u

v

t

107

105

102

108

Gf (∆) for ∆ = 100. Def: only
edges with residual capacity ≥ ∆

Capacity-scaling algorithm

Start with large ∆, divide by two in each phase

let f(e) = 0 for all e ∈ E
let ∆ = largest power of 2 ≤ Cmax
while ∆ ≥ 1 do

prune residual graph Gf to Gf (∆)
while there is augmenting s t path P in Gf (∆) do

f = Augment(f, P)
update Gf (∆) . only ce ≥ ∆

end while
∆ = ∆/2 . refine

end while

Capacity-Scaling: Running Time

I How many scaling phases? Θ(log Cmax)
I How much does the flow increase at every augmentation? ≥ ∆
I How many augmentations per phase? ≤ 2m

I Can show: at end of ∆ phase, flow value within m∆ of max.
=⇒ at most 2m iterations ∆/2 phase

I (Sketch) Construct cut (A, B) as in max-flow / min-cut
theorem.

I Edges from A to B are within ∆ of being saturated.
I Edges from B to A carry less than ∆ flow.
I =⇒ Cut capacity at most m∆ more than flow value.

I Recall: time to find augmenting path? O(m)
I Overall: O(m2 log Cmax), polynomial

Choosing Short Augmenting Paths

Two similar algorithms: Edmonds-Karp, Dinitz
I Work as usual on residual graph
I Use BFS from s to construct level graph

keep only edges from level k to k + 1
⇒ force choosing shortest augmenting paths

I Each new augmenting path removes one bottleneck edge
at most m augmentations per phase (no back edges)
when level graph disconnected, must consider longer paths

I Construct new level graph (new BFS)
at most n− 1 different lengths ⇒< n phases

I Complexity: O(m2n): polynomial, capacity-independent
More intricate variant (Dinitz) achieves O(mn2)

Running Times

I Basic F-F: O(mnCmax) pseudo-polynomial
I polynomial in magnitude

I Capacity-scaling: O(m2 log Cmax) polynomial
I polynomial in number of bits

I Edmonds-Karp: O(m2n) strongly-polynomial
I does not depend on values, only m, n

I Dinitz: O(mn2) even better

