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A Puzzle

How many loads of grain can you ship from s to t?
Which boats are used?

A Puzzle Max-Flow Problem: Flow Network
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Problem input is a flow network
I Directed graph
I Source node s
I Target node or sink t
I Edge capacities c(e) ≥ 0

Solution: A Flow
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A network flow is an assignment
of values f(e) to each edge e,
which satisfy:
I Capacity constraints:

0 ≤ f(e) ≤ c(e) for all e
I Flow conservation:

∑

e into v

f(e) =
∑

e out of v

f(e)

for all v /∈ {s, t}.
I Max flow problem: find a

flow of maximum value
I Value v(f) of flow f = total

flow on edges leaving source

Network Flow

I Previous topics were design techniques
(Greedy, Divide-and-Conquer, Dynamic Programming)

I Network flow: a specific class of problems with many
applications

I Direct applications:
commodities in networks
I transporting goods on

the rail network
I packets on the internet
I gas through pipes

I Indirect applications:
I Matching in graphs
I Airline scheduling
I Baseball elimination

Plan: design and analyze algorithms for max-flow problem,
then apply to solve other problems



First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts

Soviet rail network (Harris & Ross, RAND report, 1955)

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Clicker Question

Let’s recall how a cut is defined:

A: A partition of graph vertices into two subsets

B: A partition of nodes so that the graph is bipartite

C: A set of edges that give a matching between two node sets

D: A set of edges between two node sets so that no two edges cross

Designing a Max-Flow Algorithm
First idea: initialize to zero flow, then repeatedly “augment” flow
on paths from s to t until we can no longer do so.
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Problem: we are stuck, all paths from s to t have a saturated edge.

“In dealing with the usual railway networks a single flooding,
followed by removal of bottlenecks, should lead to a maximal flow.”
(Boldyreff, RAND report, 1955)

We’d like to “augment” s
+1−−→ v

−1←−− u
+1−−→ t, but this is not a real

s→ t path. How can we identify such an opportunity?

Residual Graph

The residual graph Gf identifies ways to increase flow on edges with
leftover capacity, or decrease flow on edges already carrying flow:
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For each original edge e = (u, v) in G, it has:
I A forward edge e = (u, v) with residual capacity c(e)− f(e)
I A reverse edge e′ = (v, u) with residual capacity f(e)

Edges with zero residual capacity are omitted

Exercise: Residual Graph
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Let G and f be as depicted above.
How many edges are there in the residual graph ?

A. 9

B. 12

C. 15

D. 18

Exercise: Residual Graph
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Let G and f be as depicted above.
How many edges in the residual graph have capacity > 10?

A. 0

B. 1

C. 3

D. 4



Exercise: Residual Graph
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Exercise: Draw the Residual Graph
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Augment Operation

Revised Idea: use paths in the residual graph to augment flow
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Gf
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new flow

I P = s→ v → u→ t has bottleneck capacity 1.
I Increase flow for forward edges, decrease for backward edges.

I Augment s
+1−−→ v

−1←−− u
+1−−→ t

Clicker Question

What is the highest bottleneck capacity of an augmenting path?
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A. 1

B. 4

C. 5

D. 11

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

Augment(f , P )
Let b = bottleneck(P , f) . least residual capacity in P
for each edge (u, v) in P do

if (u, v) is a forward edge then
Let e = (u, v) be the original edge
f(e) = f(e) + b . increase flow on forward edges

else (u, v) is a backward edge
Let e = (v, u) be the original edge
f(e) = f(e)− b . decrease flow on backward edges

end if
end for

Augment Example
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Augmenting Path
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New Flow
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Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph
and use them to augment flow!

Ford-Fulkerson(G, s, t)
. Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

. Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P )
update Gf

end while
return f

Clicker Question

Given a graph G and a flow f , how can you test if f is a maximum
flow?

A. Check whether all edges from s are saturated.

B. Check whether all edges into t are saturated.

C. Check for an s→ t path in the residual graph Gf .

D. Check for an t→ s path in the residual graph Gf .

Ford-Fulkerson Analysis

I Step 1: argue that F-F returns a flow
I Step 2: analyze termination and running time
I Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f ′ = Augment(f , P ) is also a flow.

Proof idea. Verify two conditions for f ′ to be a flow:
capacity and flow conservation.



Prove: Capacity
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Gf

I Suppose original edge is e = (u, v)

I If e appears in P as a forward edge (u +b−→ v), then flow
increases by bottleneck capacity b, which is at most
c(e)− f(e), so does not exceed c(e)

I If e appears in P as a reverse edge (v −b←− u), then flow
decreases by bottleneck capacity b, which is at most f(e),
so is at least 0

Prove: Flow Conservation
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Gf
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I Consider any node v in the augmenting path, and do a case
analysis on the types of the incoming and outgoing edge:

residual graph: P = s u −→v −→ w  t

original graph: u
+b−→v

+b−→ w

u
+b−→v

−b←− w

u
−b←−v

+b−→ w

u
−b←−v

−b←− w

I In all cases, the change in incoming flow to v is equal to the
change in outgoing flow from v.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow
values and residual capacities remain integers during the algorithm.

Running time:
I In each F-F iteration, flow increases by at least 1. Therefore,

number of iterations is at most v(f∗), where f∗ is the final
flow.

I Let Cs be the total capacity of edges leaving source s.
I Then v(f∗) ≤ Cs.
I So F-F terminates in at most Cs iterations

Running time per iteration? Cost of finding an augmenting path
How to find one? Any graph search: O(m + n)

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows
and cuts in graphs: the max-flow min-cut theorem.
I An s-t cut (A, B) is a partition of the nodes into sets A and B

where s ∈ A, t ∈ B
I Capacity of cut (A, B) equals

c(A, B) =
∑

e from A to B

c(e)

I Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)


