COMPSCI 311: Introduction to Algorithms

Lecture 16: Dynamic Programming — Shortest Paths

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

25 March 2019

Currency Trading

» Given: directed graph with
exchange rate 7, on edge e

» Find best exchange rate s — t,
i.e., path P with maximum
product [[.cp re over edges

» Assumption (no arbitrage):
no cycles C with [J.core > 1.

Compute optimal path cost, but

» product, not sum
» maximum, not minimum

From Rates to Costs

» From product to sum: take logarithm!
logarithm of product is sum of logs

» Maximize x means minimize -x

> Let ¢ = —log 7, be the cost of edge e

usD

-0.36

Rates Costs
» Highest rate path is now minimum cost path

Reduce to Shortest Paths

» Define cost(P) to be the negative log of its exchange rate.
Then the highest rate path is now the lowest cost path.

» But cost(P) is also the sum of its edge costs:

cost(P) = —log] 7e
ecP

> (~logre)

ecP

Yo

ecP

» Equivalent problem: find the s — ¢ path of minimum cost

Currency Trading with Shortest Paths

> Negative edge weights!
Edge costs are now
ce = —logre

» Problem: given a graph with
possibly negative edge weights,
find shortest s — t path

» Assumption: no cycle C'
with >° coce < 0. Why?

Dijkstra's Algorithm: Negative Edge Behavior

What is the shortest path value the algorithm finds for d(s,v) ?

Clicker Question 1

When run on a graph with negative edges, Dijkstra's algorithm:

A. Does not give the right value if shortest path has negative edge.

B. May give the right value even if shortest path has a negative
edge.

C. Does not give the right value if the target node is first reached
through a positive edge.

D. Gives the right value if the target node is first reached through a
negative edge.

Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node ¢
(single-destination shortest paths)

Like single-source, but destination more relevant e.g., in routing

» Dijkstra's algorithm started with closest neighbor
path must be edge, can't get shorter

» Not true for negative costs: can keep decreasing

» Need different order: increasing edge count to target ¢

Fact. If no negative cycles, shortest path has at most n — 1 edges.
Why?

Path with > n edges has > n + 1 nodes: would repeat some node,
thus have a cycle. Can “cut out” nonnegative cycle for shorter path.

Clicker Question 2

In a directed graph with n + 2 nodes, the maximum number of
acyclic paths from a node s to a node ¢ # s is:

A <2
B.<(n—1)!
C.<n!

D. can be > n!

Towards a Recurrence

For shortest paths from any v to a fixed ¢, we'd like to compute
OPT(i + 1,v) from OPT(i,v), by incrementing the edge count i.

If we find a better v ~~ ¢ path starting with edge (v, w), we'll update
OPT(i + 1,v) = ¢y + OPT (4, w)
Should OPT(i,v) mean the optimal cost from v to ¢:

» on a path with exactly i edges ?
» on a path with at most i edges ?

In the end, want at most n — 1 edges (may be any number)

Bellman-Ford Recurrence

» Let OPT(%,v) be cost of shortest v ~~ ¢ path with at most ¢
edges.

> Base case: OPT(0,t) =0, OPT(0,s) = oo for s # ¢

» Recurrence: let P be the optimal v ~~ ¢ path using at most
i+ 1 edges.

» if P uses at most 7 edges, then OPT(i + 1,v) = OPT(¢,v).
» else P = v — w ~» t where w ~~ ¢ path uses at most 7 edges.
OPT(i + 1,v) = ¢y + OPT (4, w)

OPT(i,v) = min {OPT(i —1,v), (Hli)llE{Cv,w +OPT(i —1, u;)}}
vw)E

Bellman-Ford Algorithm

OPT(i,v) = min {OPT(i —1,v), minE{cww +OPT(i — 1, w)}}
€

(v,w)

Shortest-Path(G, t)
n = number of nodes in G

create array M of size n X n (iterations X nodes)
set M[0,t] =0 and M[0,v] = oo for all v # ¢

fori=1ton—1do >n — 1 times
for all nodes v # ¢ do >n — 1 times
Mli,v] = M[i — 1,v] > less than ¢ edges

for all (v,w) € E do
if M[i,v] > clv,w] + M[i — 1,w] then > m times
MTi,v] = clv,w] + M[i — 1, w]

Running time? O(n(n + m)). If graph connected, O(mn).

Example

lalbleld]e]t]
0:‘00‘00‘00‘00‘00‘0‘
L:[oo[3] 4 Joo]-2]0]
2:[8][2[-3]oc]-2]0]
3[7[2]-4]5]-2]0]
4 7]2]-4]4]-2]0]
5:[7[2]-4[4]-2]0]

Clicker Question 3

Suppose Mi,v] = M[i — 1,v] for all v. Then

A. There are no negative edge costs in the graph.
B. There is a negative cycle in the graph.

C. All v ~~ t paths have at most i edges.

D. We can terminate the algorithm after the ith iteration, because
no future values will change.

Improvements

» Reduce memory O(n?) — O(n)

Only need path lengths for i — 1 and ¢ (vector, not matrix)
can actually just update a distance vector d[] in-place

> Keep track of path: succ[v] = next node on path to ¢
initially, succ[v] = null for all v # ¢
when updating M i, v] = c[v,w] + M[i — 1, w], set succ[v] = w

» Try updates only when needed

Update means path of length 4, thus w was updated in step ¢ — 1.
keep track of nodes w updated at each step
next step, only try to update their predecessors

Bellman-Ford-Moore: Efficient Implementation

Shortest-Path(G, t)
set d[t] =0 and d[v] = oo for all v # ¢
set succ[v] = null for all v
fori=1ton—1do
for all nodes w # ¢ do
if w updated in previous pass then
for all (v,w) € E do
if d[v] > c[v, w] + d[w] then
d[v] = c[v,w] + dw]
succfv] = w

Analysis

» Does following succ[v] links get us path of length d[v]?

No, might be shorter, if d[v] updated one step later

» Does following successor links always lead to target ¢?

Yes, if and only if there is no negative-length cycle

» How to detect negative-length cycles?

Run algorithm for one extra step!

Detecting Negative-Weight Cycles
If no negative-weight cycles, shortest path has < n — 1 edges.
If some d[v] decreases in n'" iteration = negative-weight cycle!

But this is only over paths to a fixed target node t.
How to cover the entire graph? And find the actual cycle?

Add dummy sink node with zero-cost edges from all nodes.
Use this as target (all nodes are predecessors and will be covered).

Still O(n) space, O(mn) time.

Cf_s_@ie%? .

2 -3 —‘3
|
I o

N\

W=

Finding Negative-Weight Cycles Early

Do we need to wait for the nth iteration?

If no cycles, succ|] pointers form a tree leading to root ¢.
Suppose we update succ[v] = w. Two ways to check for new cycle:

» Follow pointers from w, looking for v. Bad, could be O(n).
» Store tree rooted at v (list of all nodes x with succ[z] = v).
Recursively check whether w is in tree of v.

Insight: Check takes time proportional to work already done
(setting up the succ|] pointers).

Careful: claim credit for work done only once (or constant times).
= while checking w, remove all nodes from tree of v.
Since they have paths to v and d[v] updated, they'll be added again.

Shortest-path complexity preserved: O(n) space, O(mn) time.
Negative-weight cycle ¢ found after length(c) iterations.

