
COMPSCI 311: Introduction to Algorithms
Lecture 16: Dynamic Programming – Shortest Paths

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

25 March 2019

Currency Trading

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

I Given: directed graph with
exchange rate re on edge e

I Find best exchange rate s→ t,
i.e., path P with maximum
product ∏

e∈P re over edges

I Assumption (no arbitrage):
no cycles C with ∏

e∈C re > 1.

Compute optimal path cost, but
I product, not sum
I maximum, not minimum

From Rates to Costs

I From product to sum: take logarithm!
logarithm of product is sum of logs

I Maximize x means minimize -x
I Let ce = − log re be the cost of edge e

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

Rates

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

Costs
I Highest rate path is now minimum cost path

Reduce to Shortest Paths

I Define cost(P) to be the negative log of its exchange rate.
Then the highest rate path is now the lowest cost path.

I But cost(P) is also the sum of its edge costs:

cost(P) = − log
∏

e∈P

re

=
∑

e∈P

(− log re)

=
∑

e∈P

ce

I Equivalent problem: find the s→ t path of minimum cost

Currency Trading with Shortest Paths

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

I Negative edge weights!
Edge costs are now
ce = − log re

I Problem: given a graph with
possibly negative edge weights,
find shortest s→ t path

I Assumption: no cycle C
with ∑

e∈C ce < 0. Why?

Dijkstra’s Algorithm: Negative Edge Behavior

s

x y

u v

2

2

3

1

4 -4

What is the shortest path value the algorithm finds for d(s, v) ?

Clicker Question 1

When run on a graph with negative edges, Dijkstra’s algorithm:

A. Does not give the right value if shortest path has negative edge.

B. May give the right value even if shortest path has a negative
edge.

C. Does not give the right value if the target node is first reached
through a positive edge.

D. Gives the right value if the target node is first reached through a
negative edge.

Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node t
(single-destination shortest paths)

Like single-source, but destination more relevant e.g., in routing

I Dijkstra’s algorithm started with closest neighbor
path must be edge, can’t get shorter

I Not true for negative costs: can keep decreasing
I Need different order: increasing edge count to target t

Fact. If no negative cycles, shortest path has at most n− 1 edges.
Why?

Path with ≥ n edges has ≥ n + 1 nodes: would repeat some node,
thus have a cycle. Can “cut out” nonnegative cycle for shorter path.

Clicker Question 2

In a directed graph with n + 2 nodes, the maximum number of
acyclic paths from a node s to a node t 6= s is:

A. ≤ 2n

B. ≤ (n− 1)!

C. ≤ n!

D. can be > n!

Towards a Recurrence

For shortest paths from any v to a fixed t, we’d like to compute
OPT(i + 1, v) from OPT(i, v), by incrementing the edge count i.

If we find a better v t path starting with edge (v, w), we’ll update

OPT(i + 1, v) = cv,w + OPT(i, w)

Should OPT(i, v) mean the optimal cost from v to t:
I on a path with exactly i edges ?
I on a path with at most i edges ?

In the end, want at most n− 1 edges (may be any number)

Bellman-Ford Recurrence
I Let OPT(i, v) be cost of shortest v t path with at most i

edges.

I Base case: OPT(0, t) = 0, OPT(0, s) =∞ for s 6= t

I Recurrence: let P be the optimal v t path using at most
i + 1 edges.
I if P uses at most i edges, then OPT(i + 1, v) = OPT(i, v).
I else P = v → w t where w t path uses at most i edges.

OPT(i + 1, v) = cv,w + OPT(i, w)

OPT(i, v) = min
{

OPT(i− 1, v), min
(v,w)∈E

{cv,w + OPT(i− 1, w)}
}

Bellman-Ford Algorithm

OPT(i, v) = min
{

OPT(i− 1, v), min
(v,w)∈E

{cv,w + OPT(i− 1, w)}
}

Shortest-Path(G, t)
n = number of nodes in G
create array M of size n× n (iterations × nodes)
set M [0, t] = 0 and M [0, v] =∞ for all v 6= t
for i = 1 to n− 1 do . n− 1 times

for all nodes v 6= t do . n− 1 times
M [i, v] = M [i− 1, v] . less than i edges
for all (v, w) ∈ E do

if M [i, v] > c[v, w] + M [i− 1, w] then . m times
M [i, v] = c[v, w] + M [i− 1, w]

Running time? O(n(n + m)). If graph connected, O(mn).

Example

a b c

d e t

5 -6

42
3 4-3

4 -2

a b c d e t

0: ∞ ∞ ∞ ∞ ∞ 0
1: ∞ 3 4 ∞ −2 0
2: 8 2 −3 ∞ −2 0
3: 7 2 −4 5 −2 0
4: 7 2 −4 4 −2 0
5: 7 2 −4 4 −2 0

Clicker Question 3

Suppose M [i, v] = M [i− 1, v] for all v. Then

A. There are no negative edge costs in the graph.

B. There is a negative cycle in the graph.

C. All v t paths have at most i edges.

D. We can terminate the algorithm after the ith iteration, because
no future values will change.

Improvements

I Reduce memory O(n2)→ O(n)

Only need path lengths for i− 1 and i (vector, not matrix)
can actually just update a distance vector d[] in-place

I Keep track of path: succ[v] = next node on path to t
initially, succ[v] = null for all v 6= t
when updating M [i, v] = c[v, w] + M [i− 1, w], set succ[v] = w

I Try updates only when needed

Update means path of length i, thus w was updated in step i− 1.
keep track of nodes w updated at each step
next step, only try to update their predecessors

Bellman-Ford-Moore: Efficient Implementation

Shortest-Path(G, t)
set d[t] = 0 and d[v] =∞ for all v 6= t
set succ[v] = null for all v
for i = 1 to n− 1 do

for all nodes w 6= t do
if w updated in previous pass then

for all (v, w) ∈ E do
if d[v] > c[v, w] + d[w] then

d[v] = c[v, w] + d[w]
succ[v] = w

Analysis

I Does following succ[v] links get us path of length d[v]?

No, might be shorter, if d[v] updated one step later

I Does following successor links always lead to target t?

Yes, if and only if there is no negative-length cycle

I How to detect negative-length cycles?

Run algorithm for one extra step!

Detecting Negative-Weight Cycles
If no negative-weight cycles, shortest path has ≤ n− 1 edges.

If some d[v] decreases in nth iteration ⇒ negative-weight cycle!

But this is only over paths to a fixed target node t.
How to cover the entire graph? And find the actual cycle?

Add dummy sink node with zero-cost edges from all nodes.
Use this as target (all nodes are predecessors and will be covered).

Still O(n) space, O(mn) time.

Detecting negative cycles

Theorem 4. Can find a negative cycle in Θ(mn) time and Θ(n2) space.

Pf.

独Add new sink node t and connect all nodes to t with 0-length edge.

独G has a negative cycle iff G ʹ has a negative cycle.

独Case 1. [OPT(n, v) = OPT(n – 1, v) for every node v]
By Lemma 7, no negative cycles.

独Case 2. [OPT(n, v) < OPT(n – 1, v) for some node v]
Using proof of Lemma 8, can extract negative cycle from v↝t path. 
(cycle cannot contain t since no edge leaves t) ▪

 64

2�3 4

5

�3

�44

�3

6

t

G′
0

0

0

0

Finding Negative-Weight Cycles Early
Do we need to wait for the nth iteration?

If no cycles, succ[] pointers form a tree leading to root t.
Suppose we update succ[v] = w. Two ways to check for new cycle:
I Follow pointers from w, looking for v. Bad, could be O(n).
I Store tree rooted at v (list of all nodes x with succ[x] = v).

Recursively check whether w is in tree of v.

Insight: Check takes time proportional to work already done
(setting up the succ[] pointers).

Careful: claim credit for work done only once (or constant times).
⇒ while checking w, remove all nodes from tree of v.
Since they have paths to v and d[v] updated, they’ll be added again.

Shortest-path complexity preserved: O(n) space, O(mn) time.
Negative-weight cycle c found after length(c) iterations.

