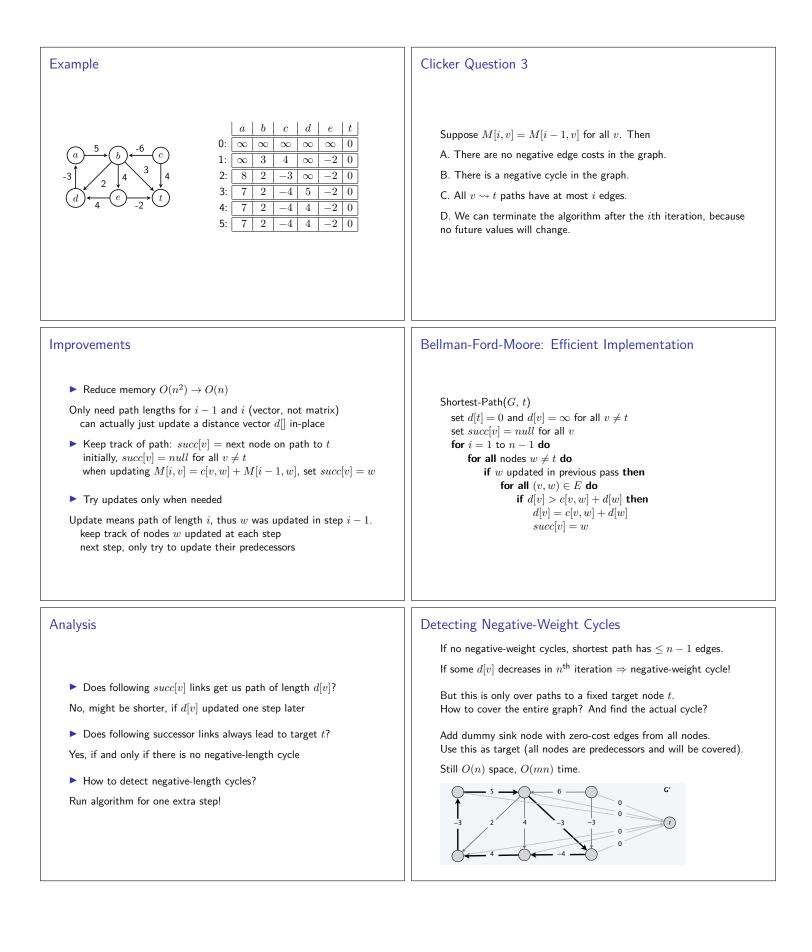


Clicker Question 1	Bellman-Ford Algorithm: Setup
When run on a graph with negative edges, Dijkstra's algorithm:A. Does not give the right value if shortest path has negative edge.B. May give the right value even if shortest path has a negative edge.C. Does not give the right value if the target node is first reached through a positive edge.D. Gives the right value if the target node is first reached through a negative edge.	 Consider shortest paths from any node to a given target node t (single-destination shortest paths) Like single-source, but destination more relevant e.g., in routing Dijkstra's algorithm started with closest neighbor path must be edge, can't get shorter Not true for negative costs: can keep decreasing Need different order: <i>increasing edge count</i> to target t Fact. If no negative cycles, shortest path has at most n − 1 edges. Why? Path with ≥ n edges has ≥ n + 1 nodes: would repeat some node, thus have a cycle. Can "cut out" nonnegative cycle for shorter path.
Clicker Question 2	Towards a Recurrence
In a directed graph with $n + 2$ nodes, the maximum number of acyclic paths from a node s to a node $t \neq s$ is: A. $\leq 2^n$ B. $\leq (n - 1)!$ C. $\leq n!$ D. can be $> n!$	For shortest paths from any v to a fixed t , we'd like to compute OPT(i + 1, v) from $OPT(i, v)$, by incrementing the edge count i . If we find a better $v \rightsquigarrow t$ path starting with edge (v, w) , we'll update $OPT(i + 1, v) = c_{v,w} + OPT(i, w)$ Should $OPT(i, v)$ mean the optimal cost from v to t : • on a path with <i>exactly i</i> edges ? • on a path with <i>at most i</i> edges ? In the end, want at most $n - 1$ edges (may be any number)
Bellman-Ford Recurrence	Bellman-Ford Algorithm
 Let OPT(i, v) be cost of shortest v → t path with at most i edges. Base case: OPT(0, t) = 0, OPT(0, s) = ∞ for s ≠ t 	$OPT(i,v) = \min\left\{OPT(i-1,v), \min_{(v,w)\in E} \{c_{v,w} + OPT(i-1,w)\}\right\}$
 Recurrence: let P be the optimal v → t path using at most i + 1 edges. if P uses at most i edges, then OPT(i + 1, v) = OPT(i, v). else P = v → w → t where w → t path uses at most i edges. OPT(i + 1, v) = c_{v,w} + OPT(i, w) 	$ \begin{array}{ c c c c c } \mbox{Shortest-Path}(G, t) & n = \mbox{number of nodes in } G & \\ \mbox{create array } M \mbox{ of size } n \times n \mbox{ (iterations \times nodes)} & \\ \mbox{set } M[0,t] = 0 \mbox{ and } M[0,v] = \infty \mbox{ for all } v \neq t & \\ \mbox{for } i = 1 \mbox{ to } n - 1 \mbox{ do } & & \triangleright n - 1 \mbox{ times} & \\ \mbox{for all nodes } v \neq t \mbox{ do } & & \triangleright n - 1 \mbox{ times} & \\ \mbox{M}[i,v] = M[i-1,v] & & \triangleright \mbox{ less than } i \mbox{ edges} & \\ \mbox{for all } (v,w) \in E \mbox{ do } & \\ \end{array} $
$OPT(i,v) = \min\left\{OPT(i-1,v), \min_{(v,w)\in E} \{c_{v,w} + OPT(i-1,w)\}\right\}$	$\label{eq:main_state} \begin{array}{ll} \mbox{if } M[i,v] > c[v,w] + M[i-1,w] \mbox{ then } & \triangleright \ m \ \mbox{times} \\ M[i,v] = c[v,w] + M[i-1,w] \\ \\ \mbox{Running time? } O(n(n+m)). \mbox{ If graph connected, } O(mn). \end{array}$



Finding Negative-Weight Cycles Early

Do we need to wait for the $n^{\rm th}$ iteration?

If no cycles, succ[] pointers form a tree leading to root t. Suppose we update succ[v]=w. Two ways to check for new cycle:

- Follow pointers from w, looking for v. Bad, could be O(n).
- Store tree rooted at v (list of all nodes x with succ[x] = v). Recursively check whether w is in tree of v.

Insight: Check takes time proportional to work already done (setting up the succ[] pointers).

Careful: claim credit for work done only **once** (or constant times). \Rightarrow while checking w, *remove* all nodes from tree of v. Since they have paths to v and d[v] updated, they'll be added again.

Shortest-path complexity preserved: O(n) space, O(mn) time. Negative-weight cycle c found after length(c) iterations.