
COMPSCI 311: Introduction to Algorithms

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

January 23, 2019

COMPSCI 311: Introduction to Algorithms

I Instructor: Marius Minea
I Where: ILC S140 (Integrative Learning Center)
I When: Mon/Wed 4:00-5:15pm
I Discussion Sections: Fri 9:05-9:55 and 10:10-11:00, Flint 201
I TA: Jesse Lingeman, Karine Tung, Raghavendra Addanki,

Subhojyoti Mukherjee

Lectures similar to Section 1 (Dan Sheldon);
same TAs, homeworks, quizzes, midterms, Piazza, Gradscope;
different finals

What is Algorithm Design?

How do you write a computer program to solve a complex problem?
I Computing similarity between DNA sequences
I Routing packets on the Internet
I Scheduling final exams at a college
I Assign medical residents to hospitals
I Find all occurrences of a phrase in a large collection of

documents
I Finding the smallest number of gas stations that can be built in

the US such that everyone is within 20 minutes of a gas station.

DNA sequence similarity

I Input: two strings s1 and s2 of length n

I s1 = AGGCTACC
I s2 = CAGGCTAC

I Output: minimum number of insertions/deletions to transform
s1 into s2

I Algorithm: ????

I Even if the objective is precisely defined, we are often not ready
to start coding right away!

What is Algorithm Design?

I Step 1: Formulate the problem precisely
I Step 2: Design an algorithm
I Step 3: Prove the algorithm is correct
I Step 4: Analyze its running time

Important: this is an iterative process
Sometimes we don’t get the algorithm right on the first try
Sometimes we’ll redesign the algorithm to prove correctness easier
or to make it more efficient

Usually, two steps:
I getting to a (mathematical) clean core of the problem
I identify the appropriate algorithm design techniques

Course Goals

I Learn how to apply the algorithm design process. . . by practice!

I Learn specific algorithm design techniques
I Greedy
I Divide-and-conquer
I Dynamic Programming
I Network Flows

I Learn to communicate precisely about algorithms
I Proofs, reading, writing, discussion

I Prove when no exact efficient algorithm is possible
I Intractability and NP-completeness

Prerequisites: CS 187 and 250

I Algorithms use data structures
I Familiarity

I at programming level (lists, stacks, queues, . . .)
I with mathematical objects (sets, lists, relations, partial orders)

precise statement of algorithm is in terms of such objects
I Two key notions to revisit:

I Recursion: many algorithm classes are recursive
so are most relations for computing algorithmic complexity

I Proofs: for algorithm correctness; by induction, contradiction,
. . .

Proofs Are Important!

I Need to make sure algorithm is correct
I Think of special / corner cases
I Case in point: Timsort sorting algorithm was broken!

I developed in 2002 (Python), adopted as standard sort in Java
I tries to find and extend segments that are already sorted
I uses stack to track segments and their lengths
I loop invariant was not correctly reestablished
I thus computed worst case stack size was wrong!
I crash for array > 67M elements
I bug found and fixed in 2015 by theorem proving

Grading Breakdown

I Participation (10%): Discussion section, in-class quizzes
(iClicker)

I Homework (25%): (every two weeks, usually due Thursday)
I Moodle Quiz (5%): (due every Monday).
I Midterm 1 (20%): Focus on first third of lectures. 7pm,

Thu Feb 21
I Midterm 2 (20%): Focus on second third of lectures. 7pm,

Thu Apr 11
I Final (20%): Covers all lectures. 3:30pm, Mon May 6

Course Information

Course websites:

people.cs.umass.edu/~marius/
class/cs311/

Course information, slides,
homework, pointers to all
other pages

moodle.umass.edu Quizzes, solutions, grades
piazza.com Discussion forum, contacting

instructors and TA’s
gradescope.com Submitting and returning

homework

Announcements: Check your UMass email / Piazza regularly for
course announcements.

Homeworks and Quizzes

I Online Quizzes: Quizzes must be submitted before 8pm Monday.
No late quizzes allowed but we’ll ignore your lowest scoring quiz.

I Homework: Submit via Gradescope, by 11:59 pm of due date.
50% penalty for homework that is late up to 24 hours.
Homework that is late by more than 24 hours receives no credit.
One homework may be up to 24 hours late without penalty.

Collaboration and Academic Honesty
I Homework: Collaboration OK (and encouraged) on homework.

But: you should read and attempt on your own first.
The writeup and code must be your own.
Looking at written solutions that are not your own is considered
cheating. There will be formal action if cheating is suspected.
You must list your collaborators and any sources (printed or
online) at the top of each assignment.

I Online Quizzes: Should be done entirely on your own.
You may consult the book and slides as you do the quiz.
Again, there will be formal action if cheating is suspected.

I Discussions: Groups for the discussion section exercises will be
assigned at the start of each session.
You must complete the exercises with your assigned group.

I Exams: Closed book and no electronics.
Cheating will result in an F in the course.

I If in doubt whether something is allowed, ask!

Stable Matching

I Real-life scenario
I matching student interns to companies
I or medical residents to hospitals

I Both students and companies have preferences / ranking lists

I If not properly managed, can become chaotic
(assume participants are selfish, act in their own self-interest)
I student may get better offer and reject current one
I student may actively call company, see if they are preferred

over the current status

Lloyd Shapley. Stable matching theory and Gale–Shapley algorithm.

 
 
 
 
 
 
 
Alvin Roth. Applied Gale–Shapley to matching med-school students with

hospitals, students with schools, and organ donors with patients.

2012 Nobel Prize in Economics

31

Lloyd Shapley

original applications: 
college admissions and

opposite-sex marriage

Alvin Roth

slide credit: Kevin Wayne / Pearson

Stable Matching and College Admissions

I Suppose there are n colleges c1, c2, . . . , cn and n students
s1, s2, . . . , sn.

I Each college has a ranking of all the students that they could
admit and each student has a ranking of all the colleges.
To simplify, suppose each college can only admit one student.

I What other simplification(s) have we made?

I n students, n colleges – could potentially match one-to-one

I Matching: a set of pairs (c, s) such that every college and every
student appears in at most one pair

I Perfect matching: every student and college is matched

Defining Stability

I Can we match students to colleges such that everyone is happy?
I Not necessarily, e.g., if UMass was everyone’s top choice.

I Can we match students to colleges such that matching is stable?
I Need to precisely define stability

I (In)stability: Don’t want to match (c, s) and (c′, s′) if c and s′

would prefer to switch and be matched with each other.

I Unstable pair: A pair (c, s) is unstable if c prefers s to matched
student and s prefers c to matched college

I Are the two wordings equivalent?
It follows that an unstable pair is not part of matching

Problem Formulation

I Input: preference lists for n colleges and n students
I Output? need definitions first

I Matching: set M of college-student pairs, each college/student
participate in at most one pair.

I Perfect matching: each college/student in exactly one pair
I Instability or unstable pair (with respect to matching M):

a pair (c, s) /∈ M such that
I (c, s′) ∈ M but c prefers s to s′

I (c′, s) ∈ M but s prefers c to c′

I Stable matching: perfect matching with no instabilities

I Output: a stable matching

Clicker Question 1

1st 2nd 3rd

Atlanta Xavier Yvette Zeus
Boston Yvette Xavier Zeus
Chicago Xavier Yvette Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago
Yvette Atlanta Boston Chicago
Zeus Atlanta Boston Chicago

Which is an unstable pair with respect to the matching {A - X, B -
Z, C - Y}? (marked in bold above)

A: A - Y

B: B - X

C: C - Y

D: none of the above

Examples

Do stable matchings always exist? Are they unique? Let’s see. . .
I Example 1: universal prefs

Colleges

a: 1 2
b: 1 2

Students

1: a b
2: a b

I M = {(a, 1), (b, 2)}? stable
I M = {(a, 2), (b, 1)}? not stable

Examples

I Example 2: inconsistent prefs

Colleges

a: 1 2
b: 2 1

Students

1: b a
2: a b

Clicker Q2: You are given an arbitrary set
of preferences. Does it have more than one
stable matching?
A. Yes
B. No
C. It depends on the preference lists

I M = {(a, 1), (b, 2)}?
stable

I M = {(a, 2), (b, 1)}?
stable

Propose-and-Reject (Gale-Shapley) Algorithm

Initially all colleges and students are free
while some college is free and hasn’t proposed to every student
do

choose such a college c
let s = highest ranked student to whom c has not proposed
if s is free then

c and s become matched
else if s is matched to c′ but prefers c to c′ then

c′ becomes unmatched
c and s become matched

else . s prefers c′

s rejects c and c remains free
end if

end while

Analyzing the Algorithm

I Some natural questions:
I Can we guarantee the algorithm terminates?

I Can we guarantee the every college and student gets a match?

I Can we guarantee the resulting allocation is stable?

I These questions are non-obvious
I Answer may differ if we slightly change problem
I Does the following setup differ, and if so, how?

Stable roommate problem

Q. Do stable matchings always exist?

A. Not obvious a priori.

 
Stable roommate problem.

独2 n people; each person ranks others from 1 to 2 n – 1.

独Assign roommate pairs so that no unstable pairs. 
 
 
 
 
 
 
 
 

Observation. Stable matchings need not exist.

10

1st 2nd 3rd

A B C D

B C A D

C A B D

D A B C

A–B, C–D ⇒ B–C unstable 
A–C, B–D ⇒ A–B unstable 
A–D, B–C ⇒ A–C unstable

no perfect matching is stable

slide credit: Kevin Wayne / Pearson

Analyzing the Algorithm

I Some initial observations:
I (F1) Once matched, students stay matched and only

“upgrade" during the algorithm.
I (F2) College propose to students in order of college’s

preferences.

Can we guarantee the algorithm terminates?

I Yes! Proof. . .
I In every round, some college proposes to some student that

they haven’t already proposed to.
I n colleges and n students =⇒ at most n2 proposals
I =⇒ at most n2 rounds of the algorithm

Can we guarantee all colleges and students get a match?

I Yes! Proof by contradiction. . .
I Suppose not all colleges and students have matches. Then

there exists unmatched college c and unmatched student s.

I s was never matched during the algorithm (by F1)

I But c proposed to every student (by termination condition)

I When c proposed to s, she was unmatched and yet rejected c.
Contradiction!

Clicker Question 3

Depending on the problem instance, which of the following can
happen during a run of the Gale-Shapley algorithm?

A: Each student accepts their first offer and never switches.

B: Some student switches their choice more than once during a run.

C: A and B, including for the same problem instance.

D: A and B, but only for different problem instances.

Can we guarantee the resulting allocation is stable?

I Yes! Proof by contradiction
I Suppose there is an instability (c, s)

I c is matched to s′ but prefers s to s′

I s is matched to c′ but prefers c to c′

I Did c offer to s?
Yes, by (F2), since c offered to s′ who is ranked lower

I Did s accept offer from c?
Maybe initially, but s must eventually reject c for another
college, and, by (F1), s prefers final college c′ to c

I Contradiction!

Content delivery networks. Distribute much of world’s content on web.  

User. Preferences based on latency and packet loss.

Web server. Preferences based on costs of bandwidth and co-location.

Goal. Assign billions of users to servers, every 10 seconds.

A modern application

34

Algorithmic Nuggets in Content Delivery

Bruce M. Maggs Ramesh K. Sitaraman
Duke and Akamai UMass, Amherst and Akamai

bmm@cs.duke.edu ramesh@cs.umass.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
This paper “peeks under the covers” at the subsystems that
provide the basic functionality of a leading content deliv-
ery network. Based on our experiences in building one of
the largest distributed systems in the world, we illustrate
how sophisticated algorithmic research has been adapted to
balance the load between and within server clusters, man-
age the caches on servers, select paths through an overlay
routing network, and elect leaders in various contexts. In
each instance, we first explain the theory underlying the
algorithms, then introduce practical considerations not cap-
tured by the theoretical models, and finally describe what is
implemented in practice. Through these examples, we high-
light the role of algorithmic research in the design of com-
plex networked systems. The paper also illustrates the close
synergy that exists between research and industry where
research ideas cross over into products and product require-
ments drive future research.

1. INTRODUCTION
The top-three objectives for the designers and operators

of a content delivery network (CDN) are high reliability,
fast and consistent performance, and low operating cost.
While many techniques must be employed to achieve these
objectives, this paper focuses on technically interesting al-
gorithms that are invoked at crucial junctures to provide
provable guarantees on solution quality, computation time,
and robustness to failures. In particular, the paper walks
through the steps that take place from the instant that a
browser or other application makes a request for content
until that content is delivered, stopping along the way to
examine some of the most important algorithms that are
employed by a leading CDN.

One of our aims, as we survey the various algorithms, is
to demonstrate that algorithm design does not end when
the last theorem is proved. Indeed, in order to develop fast,
scalable, and cost-e↵ective implementations, significant in-
tellectual creativity is often required to address practical
concerns and messy details that are not easily captured by
the theoretical models or that were not anticipated by the
original algorithm designers. Hence, much of this paper fo-
cuses on the translation of algorithms that are the fruits of
research into industrial practice. In several instances, we
demonstrate the benefits that these algorithms provide by
describing experiments conducted on the CDN.

A typical request for content begins with a DNS query
issued by a client to its resolving name server (cf. Figure 1).
The resolving name server then forwards the request to the

Edge%Server%

Client%

Origin%

Authorita4ve%Name%Server%
%(Global%and%Local%Load%

Balancing)%

Overlay%
Rou4ng%

Content%

DNS%

Figure 1: A CDN serves content in response to a
client’s request.

CDN’s authoritative name server. The authoritative name
server examines the network address of the resolving name
server, or, in some cases, the edns-client-subnet provided by
the resolving name server [9], and, based primarily on this
address, makes a decision about which of the CDN’s clusters
to serve the content from. A variant of the stable marriage
algorithm makes this decision, with the aim of providing
good performance to clients while balancing load across all
clusters and keeping costs low. This algorithm is described
in Section 2.

But DNS resolution does not end here. The task of indi-
cating which particular web server or servers within the clus-
ter will serve the content is delegated to a second set of name
servers. Within the cluster, load is managed using a consis-
tent hashing algorithm, as described in Section 3. The web
server address or addresses are returned through the resolv-
ing name server to the client so that the client’s application,
such as a browser, can issue the request to the web server.
The web servers that serve content to clients are called edge
servers as they are located proximal to clients at the “edges”
of the Internet. As such, Akamai’s CDN currently has over
170,000 edge servers located in over 1300 networks in 102
countries and serves 15-30% of all Web tra�c.

When an edge server receives an HTTP request, it checks
to see if the requested object is already present in the server’s
cache. If not, the server begins to query other servers in

ACM SIGCOMM Computer Communication Review 52 Volume 45, Number 3, July 2015

slide credit: Kevin Wayne / Pearson

Things To Do

I Think about:
I Would it be better or worse for the students if we ran the

algorithm with the students proposing?
I Can a student get an advantage by lying about their

preferences?

I Read: Chapter 1, course policies

I Enroll in Piazza, log into Moodle, and visit the course webpage.

