
COMPSCI 311: Introduction to Algorithms Spring 2019

Homework 1
Released 1/24/2019 Due 2/7/2019 2/8/2019 11:59pm in Gradescope

Instructions. You make work in groups, but you must write solutions yourself. List collaborators on your
submission.

If you are asked to design an algorithm, please provide: (a) the pseudocode or precise description in words
of the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the
running time of your algorithm and (e) justification for your running time analysis.

Submissions. Please submit a PDF file. You may submit a scanned handwritten document, but a typed
submission is preferred. Please assign pages to questions in Gradescope.

1. (15 points) Stable Matching Running Time. In class, we saw that the Propose-and-reject algo-
rithm terminates in at most n2 iterations, when there are n students and n colleges.

(a) Construct an instance so that the algorithm requires only O(n) iterations, and prove this fact.
Your construction should be possible for all values of n.

(b) Construct an instance so that the algorithm requires Ω(n2) iterations (that is, it requires at least
cn2 iterations for some constant 0 < c ≤ 1), and prove this fact. Your construction should be
possible for all values of n.

2. (20 points) Stable Matchings: K&T Ch 1, Ex 5. Consider a version of the stable matching
problem where there are n students and n colleges as before. Assume each student ranks the colleges
(and vice versa), but now we allow ties in the ranking. In other words, we could have a school that
is indifferent two students s1 and s2, but prefers either of them over some other student s3 (and vice
versa). We say a student s prefers college c1 to c2 if c1 is ranked higher on the s’s preference list and
c1 and c2 are not tied.

(a) Strong Instability. A strong instability in a matching is a student-college pair, each of which
prefer each other to their current pairing. In other words, neither is indifferent about the switch.
Does there always exist a matching with no strong instability? Either give an example instance
for which all matchings have a strong instability (and prove it), or give and analyze an algorithm
that is guaranteed to find a matching with no strong instabilities.

(b) Weak Instability. A weak instability in a matching is a student-college pair where one party
prefers the other, and the other may be indifferent. Formally, a student s and a college c with
pairs c′ and s′ form a weak instability if either

• s prefers c to c′ and c either prefers s to s′ or is indifferent between s and s′.

• c prefers s to s′ and s either prefers c to c′ or is indifferent between c and c′.

Does there always exist a perfect matching with no weak instability? Either give an instance with
a weak instability or an algorithm that is guaranteed to find one.

3. (15 points) Big-O. For each function f(n) below, find (1) the smallest integer constant H such that
f(n) = O(nH), and (2) the largest positive real constant L such that f(n) = Ω(nL).
Otherwise, indicate that H or L do not exist. All logarithms are with base 2. Your answer should
consist of: (1) the correct value of H, (2) a proof that f(n) is O(nH), (3) the correct value of L, (4) a
proof that f(n) is Ω(nL).

(a) f(n) = 1
2n

2.

(b) f(n) = n(log n)3

(c) f(n) =
∑dlogne

i=0
n
2i .

(d) f(n) =
∑n

i=1 i
3.

(e) f(n) = 2(logn)2

1



Homework 1 2

4. (20 points) Asymptotics. K&T Ch 2, Ex 6. Given an array A of n integers, you’d like to output
a two-dimensional n× n array B in which B[i, j] = max

{
A[i], A[i + 1], . . . , A[j]

}
for each i < j.

For i ≥ j the value of B[i, j] can be left as is.

for i = 1, 2, . . . , n
for j = i + 1, . . . , n

Compute the maximum of the entries A[i], A[i + 1], . . . , A[j].
Store the maximum value in B[i, j].

(a) Find a function f such that the running time of the algorithm is O(f(n)), and clearly explain
why.

(b) For the same function f argue that the running time of the algorithm is also Ω(f(n)). (This
establishes an asymptotically tight bound Θ(f(n)).)

(c) Design and analyze a faster algorithm for this problem. You should give an algorithm with running
O(g(n)), where limn→∞ g(n)/f(n) = 0.

5. (10 points) DFS and BFS. K&T Ch 3, Ex 5. Suppose we have a connected graph G = (V,E)
and a vertex u ∈ V . If we run DFS from u, we obtain a tree T . Suppose that if we run BFS from u we
obtain exactly the same tree T . Prove that G = T . (Hint: see Facts (3.4) and (3.7) from the book.)

6. (20 points) Butterfly ID. K&T Ch 3 Ex 4. Some of your friends have become amateur lepi-
dopterists (they study butterflies). Often when they return from a trip with specimens of butterflies,
it is very difficult for them to tell how many distinct species they’ve caught—thanks to the fact that
many species look very similar to one another.
One day they return with n butterflies, and they believe that each belongs to one of two different
species, which well call A and B for purposes of this discussion. They’d like to divide the n specimens
into two groups—those that belong to A and those that belong to B—but it’s very hard for them to
directly label any one specimen. So they decide to adopt the following approach.
For each pair of specimens i and j, they study them carefully side by side. If theyre confident enough
in their judgment, then they label the pair (i, j) either “same” (meaning they believe them both to
come from the same species) or “different” (meaning they believe them to come from different species).
They also have the option of rendering no judgment on a given pair, in which case we’ll call the pair
ambiguous.
So now they have the collection of n specimens, as well as a collection of m judgments (either “same”
or “different”) for the pairs that were not declared to be ambiguous. They’d like to know if this data
is consistent with the idea that each butterfly is from one of species A or B. So more concretely, we’ll
declare the m judgments to be consistent if it is possible to label each specimen either A or B in such
a way that for each pair (i, j) labeled “same,” it is the case that i and j have the same label; and
for each pair (i, j) labeled “different,” it is the case that i and j have different labels. They’re in the
middle of tediously working out whether their judgments are consistent, when one of them realizes
that you probably have an algorithm that would answer this question right away. Give an algorithm
with running time O(m + n) that determines whether the m judgments are consistent.

7. (0 points). How long did it take you to complete this assignment?


