
COMPSCI 311: Introduction to Algorithms
Second Midterm Exam, November 14, 2018

Name: ID:

• Answer the questions directly on the exam pages.

• Show all your work for each question. More detail including comments and explanations can
help with assignment of partial credit.

• Questions have different point values. Move on to another question if you get stuck.

• If you need extra space, use the back of a page.

• No books, notes, or electronic devices are allowed. Any cheating will result in a grade of 0.

• If you have questions during the exam, raise your hand.

1. (5p) In a binary tree with integer-valued nodes, we call a node v well ordered if no node in
the left subtree of v is greater than v and no node in the right subtree of v is less than v. Design an
efficient algorithm that counts the well-ordered nodes in a binary tree and analyze its complexity.

Solution: Since a node must be compared with all descendants, we write a recursive function
that returns a triple: next to a count of well-ordered nodes, also the minimum and maximum node
value in a tree. The helper function also takes as parameter the parent value, to uniformly handle
the case of one or both empty subtrees. If a node value is between the left maximum and the right
minimum, it is well-balanced and 1 is added to the counts from the subtrees.

function minmaxroot(t, parent)
if t = nil then
return (0, parent, parent)

else
(lcnt, lmin, lmax) = minmaxroot(t.left, t.val);
(rcnt, rmin, rmax) = minmaxroot(t.right, t.val);
return (lcnt + rcnt + (t.val ≥ lmax && t.val ≤ rmin), min(lmin, t.val, rmin),

max(lmax, t.val, rmax));

function countwellordered(t)
return first(minmaxroot(t, 0)); // extract first of triple; arg. 0 does not matter

The algorithm traverses all nodes doing constant work at each, thus is has complexity Θ(n).
Comments: It is important that the minimum and maximum are computed and returned for

use by the parent node. Calling separate minimum and maximum functions repeats work and leads
to higher complexity: Θ(n log n) for a balanced tree, Θ(n2) if the tree degenerates into a list.
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2. (4p) Derive asymptotic upper and lower bounds for the following recurrences:
a) T (n) = 3T (n/9) +

√
n

Solution: The easiest way to solve this is to use the Master Theorem: here a = 3, b = 9, and
f(n) =

√
n. Note that nlogb a = nlog9 3 = n1/2, so

f(n) =
√
n = Θ(nlogb a),

and so Case 2 of the Master Theorem applies, and we have T (n) = Θ(nlogb a log n) = Θ(
√
n log n).

You can solve this using recursion trees as well.

b) T (n) = T (n− 2) + log n
Solution: We can “unroll” as usual (abusing notation slightly to not worry about whether n

is even or odd) to get

T (n) = T (n− 2) + log n = T (n− 4) + log(n− 2) + log n = . . . =

n/2∑
k=1

log(2k).

Using log(2k) = log 2 + log k = 1 + log k, we get

T (n) =

n/2∑
k=1

(1 + log k) =
n

2
+

n/2∑
k=1

log k.

We have seen numerous times in this course that
∑n/2

k=1 log k = log((n/2)!) = (n/2) log(n/2) =
Θ(n log n), which absorbs the n/2 additive factor as well, so we are left with T (n) = Θ(n log n).

3. (2p) While running sequence alignment experiments with mismatch cost 1, Max noticed that
for positive real gap penalty values δ that are sufficiently small, the aligned letters of the two strings
would form a longest common subsequence. If Max is right, state and prove a sufficient condition
on δ (possibly in terms of the string lengths) for this to occur, otherwise give a counterexample.

Solution: Let Ltot be the sum of the two string lengths. Without mismatches, the best
alignment matches a longest common subsequence (of length Lcs) and has cost δ · (Ltot − 2Lcs). If
δ < 1/Ltot, the cost is < 1, the cost of a single mismatch, so this is indeed the optimal alignment.

In fact, δ < 1/2 suffices. For x mismatches and m matches, the cost is x+δ ·(Ltot−2 ·(m+x)) =
x(1− 2δ) + δ(Ltot − 2m). Since m ≤ Lcs, this will be larger than δ · (Ltot − 2Lcs) when δ < 1/2.

Comments: A common answer was δ < 1/max(l1, l2), from a mistaken maximum number of
gaps, compared to the cost of a single mismatch. These were graded 1.5 out of 2 points.
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4. (7p) Like in the homework, you and the evil mathematician in turn take a coin from either
end of a row of 2n distinct coins. Both of you play optimally for maximum gain. If in your turn,
both choices would lead to the same total gain at the end, greedily take the larger coin. This gives
a unique strategy. Design an algorithm that computes in linear space your best move at each step,
and analyze its time complexity.

Solution: We can use precisely the same solution as in the homework problem, where we used
the max-min recurrence Mi,j = max{min{Mi+2,j ,Mi+1,j−1}+X[i],min{Mi+1,j−1,Mi,j−2}+X[j]}
with initial conditions Mi,i+1 = max{X[i], X[i+1]}. In addition, we can also store a pointer at cell
[i, j] to which of X[i] or X[j] the maximum came from (this is where we use the condition here for
breaking ties – if X[i] and X[j] both lead to the same finishing value, we greedily pick the larger of
the two). The solution here is to do the same thing at each subproblem [i, j], except to store only
a linear number of entries at any point. Remember that in the homework problem, the solution is
an induction on the quantity j − i+ 1, with step size 2. Each fixed value of j − i+ 1 corresponds
to a specific size of a subproblem, where we can fix all the entries with j − i + 1 = 2, and then
use them to fix all the entries with j − i + 1 = 4, and so on. Importantly, for any fixed value of
j − i + 1, there are only at most n subproblems that correspond to that size. The idea here is to
only store entries corresponding to two consecutive even values of j − i+ 1. Once we compute one
such value, we can forget and overwrite the lower value of j − i + 1. We can keep going until we
reach the cell corresponding to the current value of [i, j], at which point we specify our move.

The tradeoff here is that since we overwrite most smaller entries of the table, we lose information
about the pointers going back through the dynamic array. Therefore, once the mathematician makes
his move, we have to recompute all of this (in linear space) once again to determine our move. We
can keep doing this, never using more than linear space.

Each computation takes O(n2) time, since we fill out up to O(n2) values of the dynamic table
(including overwriting). There are n/2 moves made by us, and so the running time is O(n3). It is
not asymptotically smaller than this, since the first n/4 moves can be shown to take Ω(n3) time.

This is the point of time-space tradeoff, a concept central to a number of dynamic programming
problems. If we optimize one of time and space, we would have to compromise on the other.

5. (6p) For the given graph, find shortest distances to t using the
Bellman-Ford algorithm with a check to detect negative cycles.
Explain how and when the cycle is detected and whether you can
still claim valid shortest paths from some nodes.

a b c

d e t

6 -2

-7
2 5

4-3

4 -2

Solution: A simple implementation updates at each iteration d[u] = minv(d[u], c(u, v) + d[v])
for all neighbors u of nodes v whose value has changed in the previous iteration.

a b c d e t

0 : ∞ ∞ ∞ ∞ ∞ 0

1 : ∞ 5 4 ∞ −2 0

2 : 11 −9 3 7 −2 0

3 : 3 −9 −11−7 −2 0

4 : 3 −9 −11 −7 −3 0

5 : 3 −10 −11 −7 −3 0

6 : −4 −10 −12−8 −3 0

succ : b e b b d −

If values still change at iteration n (= 6), there is a negative
cycle. We can find such cycles by keeping track of each node’s
successor on the path to t (the neighbor that determined the
last update). Any node updated at iteration n (e.g., a) must
reach the cycle; we can mark the nodes and use the pointers
to print it (b−e−d−b) once we reach a marked node (b) again.
Any node reaching a negative cycle cannot have a shortest
path to t: we can find these by reversing the successor graph
and doing a bread-first search. The only remaining node that
has a shortest path to t is t itself (distance 0).
We could find the cycle earlier, at iteration 4, by checking for
cycles when the successor pointers are updated (here, for e).
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6. (5p) For the given graph, find a maximum flow by always choosing
a shortest augmenting path and updating the level graph when
needed. Explain how the algorithm works.

s a b

c d t

5 8

10
4

15
15

16 10

6

Solution:
A breadth-first search in the original flow graph (which is also the first residual graph, for flow

0) produces the level graph below (where we keep only edges going one level down).
Searching the level graph for paths from s to t produces two paths, s → a → b → t with flow

5, and s → c → d → t with flow 10. After deleting the two saturated edges, no s − t paths in the
level graph remain. The residual flow graph and the resulting level graph are shown further right.

s a b

c d t

5 8

1015

16 10

s a b

c d t

5
3

5

55
4 15

510

6

10
10

6

s a b

c d t

3

55

6

6

There is a single path in the level graph, with flow value 3, for a total of 18. The resulting
residual graph has no s− t paths (only a, c and d are reachable from s). This is the maximum flow.

Comments: The problem asked how the algorithm finds paths of increasing length by updating
the level graph. Solutions that gave the paths with no indication of how they were found (breadth-
first search or level graph) got 4.5p. Stating the flow without individual paths got 4p.

7. (5p) Consider a flow network which in addition to edge capacities has node capacities: each
node v has a limit `(v) on how much flow can pass through v. Show how to reduce this problem to
a regular network flow problem (without node capacities) and prove your reduction correct.

Solution: Given a graph G = (V,E) with the usual edge capacities, together with node
capacities `(v) for each v, we can construct G′ from it as follows. “Duplicate” each v ∈ V into
two vertices, v− and v+. The edges incident to and from v in G are separated into two sets: all
incoming edges into v are now incoming into v−, and all outgoing edges from v are now outgoing
from v+. None of these edges change their capacities. In addition, there is a single edge of capacity
`(v) directed from v− to v+.

v v− v+

`(v)

We can do this for all vertices v ∈ V . This forms our new network G′. Note that G′ has edge
capacities defined for all edges, but no vertex capacities.

Now, note that this is a correct reduction: finding an edge and vertex-capacity constrained flow
on G is equivalent to finding a “normal” edge-capacity-constrained flow on G′. This is because any
flow entering a vertex v− in G must pass through the edge (v−, v+), which has capacity c(v), and
conversely, any flow passing through an edge in G′ corresponds either to a flow passing through
the same edge in G constrained by its edge capacity, or to a vertex in G constrained by its vertex
capacity. Therefore, the reduction is correct.

The new graph G′ has exactly 2V vertices, and V + E edges. Therefore, the problems are of
comparable size. The running time of Ford-Fulkerson is also the same (assuming V = O(E), which
is always true for all connected networks, which is a reasonable assumption for flow networks).
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8). (6p) A dominating set of an undirected graph is a set of nodes D such that each graph node
is either in D or has an edge to a node in D. The DominatingSet problem asks whether a graph
has a dominating set of size ≤ k, for given k.

For example, in the given graph, b, c and d have edges to a,
and f has an edge to e, thus {a, e} is a dominating set.

b a c

d e f

a) Show how to reduce DominatingSet to SetCover and prove your reduction correct.
Solution: Given an arbitrary instance of DominatingSet, we wish to construct an instance

of SetCover so that the first instance has a dominating set of size ≤ k if and only if the second
has a set cover of size ≤ k. Furthermore, this construction needs to take polynomial time.

Given a graph G, we can define our universe to be the set of vertices of the graph G, and our
collection of subsets to be S = {Sv := v∪Nv : Nv is the neighborhood of v in G}. Clearly, S covers
the entire universe. The construction of this subset system given G clearly takes polynomial time.

Suppose G has a dominating set of size ≤ k. Let the vertices of this dominating set be
{v1, . . . , vr} for r ≤ k. Then, Sv1 , . . . , Svr is a subcollection of r subsets in S whose union cov-
ers the entire universe. Conversely, if we have a collection of subsets Sv1 , . . . , Svr in S whose union
covers the entire universe, then consider the set of vertices D = {v1, . . . , vr}. Since the collection
covers the universe, any arbitrary v ∈ V is in some subset, say Svm . This means by construction
that v ∈ {vm ∪Nvm}, so v is either in the subset D or has an edge into some vertex in D, and so
D is a dominating set. This proves the reduction.

b) What does this reduction tell you about the NP-completeness of DominatingSet ?
Solution: Nothing. If the reduction had been in the other direction, we would be able to

conclude that DominatingSet is also NP-complete (since SetCover is), but this direction just
tells us that DominatingSet is at most as hard as SetCover. Interestingly, DominatingSet is
known to be NP-complete, but this particular reduction does not enable us to conclude that fact;
the usual way to prove NP-completeness for DominatingSet is to reduce VertexCover to it,
and use the fact that VertexCover is NP-complete.

Question Value Points Earned

1 5

2 4

3 2

4 7

Question Value Points Earned

5 6

6 5

7 5

8 6

Total 40
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