
COMPSCI 311: Introduction to Algorithms
First Midterm Exam, October 3, 2018

Name: ID:

• Answer the questions directly on the exam pages.

• Show all your work for each question. More detail including comments and explanations can
help with assignment of partial credit.

• Questions have different point values. Move on to another question if you get stuck.

• You need not write pseudocode for BFS/DFS, but if you adapt them, state clearly how.

• If you need extra space, use the back of a page.

• No books, notes, or electronic devices are allowed. Any cheating will result in a grade of 0.

• If you have questions during the exam, raise your hand.

Question Value Points Earned

1 4

2 3

3 2

4 3

5 4

Question Value Points Earned

6 6

7 2

8 8

9 2

10 6

Total 40

1. (4p) Construct a stable matching example where the Gale-Shapley algorithm can have two
runs with different numbers of accepted proposals, depending on the order in which colleges propose.
Count the executions of the outer loop and explain why the numbers are the same or different.

Solution: Suppose there are two colleges A and B, and two students X and Y . The preference
lists are: A = B = (X > Y), while X = (A > B) and Y = (B > A). Consider the two following
runs of the Gale-Shapley algorithm:

A : X *accepts* (AX) B : X *accepts* (BX)

B : X *rejects* (AX) A : X *accepts* (AX)

B : Y *accepts* (AX,BY) B : Y *accepts* (AX,BY)

So it follows that even though the number of iterations of the algorithm is the same over the two
runs, the number of (possibly temporary) acceptances is different (it is two for the first run, but
three for the second). You can try to prove that the number of iterations of the algorithm will
always be the same for the same instance, no matter what choices the algorithm will make at each
iteration.

1

2. (3p) Let f(n) = n! and g(n) = nn. Prove for each of the following whether it is true or false:
a) g(n) = Θ(f(n)), b) g(n) = Ω(f(n)), c) g(n) = O(f(n)).

Solution: Clearly, g(n) > f(n) for all n > 1 (why?), and so g(n) = Ω(f(n)) trivially. Now
note that if g(n) were to be O(f(n)), then limn→∞(g(n)/f(n)) would be bounded. But

lim
n→∞

g(n)

f(n)
= lim

n→∞

nn

n!
= lim

n→∞

n

n
· n

n− 1
· n

n− 2
· · · n

2
· n

1
=∞,

since all terms in the product are at least 1, and some term (in particular the last one) is at least
n. Therefore, g(n) is not O(f(n)), and so g(n) is not Θ(f(n)) either.

3. (2p) Does log f(n) = Θ(log g(n)) imply f(n) = Θ(g(n))? Prove or give a counterexample.
Solution: No. For instance, you can take f(n) = 3n and g(n) = 2n. Clearly, log f(n) =

n log 3 = Θ(n) = Θ(log 2n) = Θ(log g(n)). However, f(n)/g(n) = (3/2)n, which grows to infinity
in the limit n→∞, and so f(n) 6= Θ(g(n)). Interestingly, you could also use the previous problem
to solve this by taking logarithms of both sides, though this is significantly harder.

4. (3p) Let v be any node in an undirected graph that contains a cycle. Prove that there is
some node whose depth in the DFS tree from v is larger than in the BFS tree from v.

Solution: Suppose we have the graph G with a cycle, and we run DFS from some vertex v.
Since G has a cycle, there is some edge e of G that is not in the BFS tree T . Suppose this edge
e = {u1, u2}. We know that e is a non-T edge, and so one of u1 and u2 is the ancestor of the other
(why?). Suppose u1 is the ancestor of u2. Note that u1 cannot be the parent of u2 in T (since then
there would be more than one edge between u1 and u2), and so the distance between u1 and u2 in
T is at least 2. This means in particular that the depthDFS(u2) ≥ depthDFS(u1) + 2. But note
that we have some path from v to u2 in G that goes to u1 and then directly goes to u2 via the edge
e, so that distG(v, u2) ≤ distG(v, u1) + 1. Therefore,

depthBFS(u2) ≤ distG(v, u1) + 1 ≤ depthDFS(u1) + 1 > depthDFS(u2),

and we are done.

2

5. (4p) Given a connected undirected graph G, give an O(|V |+ |E|) algorithm to find an edge
that can be removed while still leaving the graph connected, or answers that no such edge exists.

Solution: Do a depth-first search. If a node is visited again and it’s not the parent of the
currently explored node, we have a back edge which closes a cycle and can be removed. Otherwise,
report no such edge exists (the graph is a tree).

function DFSCycleEdge(parent, crt)
crt.visited = true
for all edges (crt, nxt) do

if nxt.visited = false then
if DFSCycleEdge(crt, nxt) then // edge found, already printed

return true
else if nxt != parent then

print edge (crt, nxt)
return true // edge found

return false // edge not found

algorithm FindCycleEdge
if not DFSCycleEdge(null, start) then

print can’t remove an edge

This runs the same traversal as a regular DFS, but it may finish early (if an edge is found).
All extra work in the foreach loop is O(1) for every edge, so the time is still O(|V |+ |E|).

6. (6p) Given a directed graph, write pseudocode for an O(|V |+ |E|) algorithm that outputs a
cycle if one exists in the graph, otherwise produces a topological ordering of the graph.

Solution: We run the topological sorting algorithm done in class. If it stops early, all remaining
nodes have incoming edges. We follow edges backwards from any remaining node – it can always
progress since all nodes have incoming edges, and eventually closes a cycle since the nodes are finite.

Q = Z = ∅.
forall v in V compute v.indegree; if v.indegree = 0 add v to Z; end for;
while Z 6= ∅ do

remove some node v from Z and V, add v to Q
for all edges v → w do

remove edge v → w
if - -w.indegree = 0 then

add w to Z
if V = ∅ then // no nodes left

print Q (topological ordering)
else // find cycle

choose v from V; S = ∅; // stack of cycle nodes
repeat

v.marked = true; S.push(v);
choose edge w → v; v = w

until v.marked // cycle found
repeat

print S.pop();
until S.top() = v // closing node

The topological sorting algorithm is unchanged, it runs in O(|V | + |E|) (and might not reach
all nodes and edges). The backward loop to find a cycle runs in O(|V |) since it reaches each vertex
at most once until it stops; printing the cycle is also O(|V |).

3

7. (2p) We transform a directed graph as follows: each strongly connected component C becomes
a single node n(C); if there is any edge from a node in SCC C1 to SCC C2 we draw a single edge
between nodes n(C1) and n(C2). Argue whether the resulting directed graph has a cycle or not.

Solution: Suppose the original directed graph was G and the resulting directed graph is
G′. Suppose G′ has some directed cycle, say (n(C1), n(C2), . . . , n(Ck) = n(C1)) for some k. By
definition, this means that G′ has directed edges between n(Ci) and n(Ci+1) for all i, and so G
had directed edges between Ci and Ci+1 for all i. Because each Ci was strongly connected, this
means that we could then construct a directed cycle C ′ going through each connected component
Ci in this cycle in order. Now, take some vi ∈ Ci and some vi′ ∈ Ci′ 6= Ci. We can now find some
directed path from vi to vi′ and also one from vi′ to vi, using the strong connectivity of the Ci and
the edges between these components in C ′. However, these two directed paths would imply that vi
and vi′ would have to be in the same connected component, which contradicts Ci 6= Ci′ . It follows
that we cannot have a directed cycle, and so G′ is a DAG.

8. (8p) Given points x1 < x2 < ... < xn, we want to find the smallest set of unit length closed
intervals that contain all these points. Here are two greedy algorithms trying to find a smallest set:
a) Pick the interval [x1, x1 +1], remove all covered points, and continue until all points are covered.
b) Pick an interval [y, y + 1] that maximizes the number of points covered, remove these points,
and continue until all points have been covered.
Prove that one suggestion works and analyze its complexity. Give a counterexample for the other.

Solution: We claim that the first algorithm works, while the second does not. To see the
second does not work optimally, consider the values (x1, x2, x3, x4, x5, x6) located at the points
(−2/3, 0, 1/3, 2/3, 1, 5/3) respectively. Then the second algorithm would first greedily pick the
middle interval [0, 1] since it is the only closed interval that contains four points. After that, it
would need two other closed intervals to cover the remaining points x1 and x6, giving a total of
three intervals. However, the optimal solution is clearly to pick [−2/3, 1/3] and [2/3, 5/3], since
between them they cover all the xi. So the second algorithm is not optimal. We show this situation
here, with blue representing the intervals picked by the second algorithm, and red the optimal (two)
intervals; note that the first algorithm does precisely pick the red intervals as well.

x1 x2 x3 x4 x5 x6

To see the first algorithm performs optimally, take some optimal solution S∗, and suppose its
leftmost interval is placed at some [x, x + 1], for some real number x. By the way our algorithm is
designed, we must have x ≤ x1 (since we will only start our first interval at x1). However, clearly,
x1 ∈ [x, x + 1], as it is the leftmost point. We now claim that all points in [x, x + 1] is covered by
[x1, x1 + 1]. Otherwise, there would have to be some point in the half-open interval [x, x1), which
is impossible (why?). So now, consider the set of intervals S′ = S∗ − {[x, x + 1]} ∪ {[x1, x1 + 1]};
it follows that S′ would cover at least all the points covered by S∗, meaning it does cover all the
points, and furthermore, it has the same size as the optimal solution, so S′ is optimal itself. We can
now recursively continue this process, adding subsequent intervals from our greedy algorithm to our
optimal solution via an exchange argument, to transform the entire solution into our algorithm’s
solution, without sacrificing optimality. It follows that the algorithm in part (a) is optimal.

Obviously, since we are already given a sorted list of points, our algorithm only has to scan the
line from left to right, giving a total running time of O(n). Note that we do not in fact have to
binary search within each interval: we can continue the scan strictly to the right and account for
points that get covered by intervals.

4

9. (2p) Construct a graph where the tentative shortest path to a node would be updated three
times while running Dijkstra’s algorithm. Hint: updates happen when a new neighbor is explored.

Solution:

S A B

F

6

2

3

1

1

The steps (choice of nodes and updates) are as follows:
Initially: d(S) = 0, d(A) = d(B) = d(F) = ∞
Choose S (d = 0). d(A) = 2, d(F) = 6.
Choose A (d = 2). d(B) = 3, d(F) = 5.
Choose B (d = 3). d(F) = 4.
Choose F (d = 4), done.

10. (6p) Give an algorithm that finds a maximum spanning tree for a connected graph G with
distinct edge weights, prove its correctness and analyze its running time.

Solution: Suppose the maximum weight of any edge in G is W . We make a new graph
G′ by taking the same vertex set and adjacencies as G, but by redefining the edge weights as
w′(e) = W −w(e) for all e, where w was the original weight function in G. First of all, notice that
all weights in G′ are non-negative (this is technically not needed for Kruskal or Prim’s algorithms,
but it is a technicality that you might be more comfortable with). We claim that a minimum
spanning tree in G′ corresponds precisely to a maximum spanning tree in G. This is clear, because
for a spanning tree T of G or G′,

w′(T) =
∑
e∈T

w′(e) =
∑
e∈T

(W − w(e)) = W (n− 1)−
∑
e∈T

w(e) = W (n− 1)− w(T),

and since W (n−1) is constant, we maximize w(T) precisely when we minimize w′(T). Therefore, we
can just run either Kruskal or Prim on G′, find an MST, and output that same tree as a maximum
spanning tree in G.

5

