COMPSCI 311: Introduction to Algorithms

Lecture 9: Divide and Conquer

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Divide and Conquer: Recipe

» Divide problem into several parts
» Solve each part recursively

» Combine solutions to sub-problems into overall solution

Comparison A Classic Algorithm: Mergesort
MergeSort(List) > complexity T(n) = ?
Greedy Divide and Conquer if L|st.|ength =1 then > Base case
return List > sorted
Formulate problem ? ? else
Design algorithm easy hard? split List in halves Listl and List2 > O(n)
Prove correctness hard easy MergeSort(List1) > T(n/2)
Analyze running time easy hard? MergeSort(List2) > T(n/2)
return Merge(List1, List2) > O(n)
end if
Clicker Question 1 Recurrence

How many total calls to MergeSort are made? (choose best answer)
(Base case: n = 1)

A) [logn]
B)
C) At most 2n
D)

At most n

At most n?

» Recurrence with convenient base case

T(n) =2T(n/2)+ O(n)

» How do we solve the recurrence for simple expression for T'(n)?
First, use definition of © (Big-O suffices for upper bound)

2T(n/2) + cn

<
<c

» Same constant? Doesn’'t matter, choose largest one.

» What next?

Solution Idea 1: Unroll the Recurrence Unrolling the Recurrence (cont.)

T(n) <2T(n/2) + cn
<2[27(n/4) + e(n/2)] + en
=22.T(n/4) +2-¢(n/2) + cn
=22.T(n/4)+2-cn

2(27(n/8) + c(n/4)) + (’(n/2)] +cn <22 (2T(n/8) + ¢(n/4)) + 2 - en

=23.T(n/8)+3-cn

T(n) <2T(n/2)+ cn
<2[27(n/4) + (n/2)| +en
<2|

» This can get messy, but works if we group terms

Do you see a pattern? 28T(n/2%) + k- cn

When does this stop? Base case after k = logn unrollings.

Clicker Question 2 Divide-and-conquer recurrence: recursion tree

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = nlog, n.

. . . . 0 ifn=1 assuming n
Which of the two terms in the sum contributes more asymptotically? T(n) = { n is a power of 2

2T(n/2) + n ifn>1
A) 28T (n/2%)) i
B) k-n

T(n) n =n
C) Both equally
T(n/2) T(n/2) 2 (n/2) =
First term will sum to n base cases, O(n) work; second term will be / / \
O(nlogn) T(n/4) T(n/4) T(n/4) T(n/4) 4md) =n
Idea 2: Draw recursion tree, track work done at each level Rz /\ /\ /\ /\
(same unrolling approach, different organization)
T(n/8) T(n/8) T(n/8) T(n/8) T®/8) T(n/8) T(n/8) T(n/8) S8 =n
T(n) =nlogan
10

slide credit: Kevin Wayne / Pearson

Solution Idea 3: Guess and Verify Guess and Verify: Induction Step

Strong induction:
Guess solution Assume T'(m) < ¢-mlogm for all m < n, prove for n

Prove by (strong) induction
T(n)<2-T(n/2)+cn

< 2-¢(n/2)log(n/2) + cn

Guess T'(n) = c-nlogn
=cn(logn — 1) +cn

Base case: n =2, T(2) < 2log2 = 2¢. True?

If not, work with ¢/ = max(T'(2)/2,c) =cnlogn

The induction proof is complete, T'(n) < cnlogn

Another Problem: Maximum Subsequence Sum (MSS)

» Input: array A of n numbers, e.g.

A=4,-35-2-1,26,—2

» Find: value of the largest subsequence sum
Al + Al + 1)+ ...+ A[j]

> (empty subsequence allowed and has sum zero)

> MSS in example? 11 (first 7 elements)

Clicker Question 3

Which of the following is true for a maximum-sum subsequence
A) It has more positive than negative numbers
B) No left subsequence (prefix) of it has negative sum

C) Any maximal sequence of negative numbers is bordered by a
sequence of positive numbers with sum larger in absolute value

What is a simple algorithm for MSS?

A Problem from HW1

MSS(A)
Initialize all entries of n x n array B to zero
fori=1ton do

sum = 0
for j =iton do
sum += A[j] > HWI: alternating sum
Bli, j] = sum
end for
end for

Return maximum entry of B[, j]

Running time? O(n?). Can we do better?

Divide-and-conquer for MSS

» Recursive solution for MSS
» ldea:

» Find MSS L in left half of array
» Find MSS R in right half of array
» Find MSS M for sequence that crosses the midpoint

M=11
—
A=71-35-2,-1,2.6,-2
—— ~—

L=6 R=8
» Return max(L, R, M)
» In picure, M encompasses L and R. Coincidence?

Yes, M need not look like in the picture
(but it won't stop in the middle of either L or R, why?)

MSS(A, left, right)

if left == right then > Base case
return max(A[left], 0)

end if

mid = | lefttrieht | > Recurse on left and right halves

2
L = MSS(A, left, mid)
R = MSS(A4, mid+1, right)

Set sum =0and L' =0
for i = mid down to 1 do

> Compute L’ (left part of M)

sum += A[i]
L' = max(L', sum)
end for

Set sum =0and R’ =0
for ¢ mid+1 to right do
sum += Ali]
R’ = max(R’,sum)
end for
M=L+FR

> Compute R’ (right part of M)

> Compute M

return max (L, R, M) > Return max

MSS(A, left, right)
if left == right then
return max(A[left], 0)
end if Running time?
» Let T'(n) be running time of
L — MSS(A, left, mid) MSS on array of size n
R = MSS(A, mid+1, right) » Two recursive calls on arrays
of size n/2: 2T'(n/2)

mid = LIefH»r'\ghtJ

Set sum = 0 and L' =0 » Work outside of recursive
for ¢ = mid down to 1 do lls: O

sum += A[q] ca S'_ (n)

L' = max(L’,sum) » Running time
end for

T(n) =2T(n/2) + O(n)
Set sum =0 and R =0

for < mid+1 to right do » We've seen that

sum += A[i]

R’ = max(R',sum)
end for T(n) = O(nlogn)
M=L+R

return max(L, R, M)

A More General Recurrence

‘ T(n)<q-T(n/2) +cn ‘

» What does the algorithm look like?

> ¢ recursive calls to itself on problems of half the size
» O(n) work outside of the recursive calls

» Exercises: ¢ =1, ¢ > 2
> Useful fact (geometric sum): if » # 1 then

1_‘d+1 ,‘d+1_1
T+r+r2+. +ri= ! =7
1—r r—1

Case ¢ = 1: Unrolling

T(n) <T(n/2)+ cn, T(l)<e

T(n) <T(n/2)+cn
T(n/4) +cn/2+cn
T(n/8

(n/8) +cn/d+cn/2+cn

INIANCIA

logn—1

< Z cn/2i
i=0
< 2cn

Conclusion: T'(n) = O(n)

Case ¢ = 1: Guess + Induction

T(n) <T(n/2)+ cn, T(1)<ec¢
Guess T'(n) < kn
Base case: need k > ¢, then T(1) <c¢<k-1

Induction step:

T(n) <T(n/2)+cn <kn/2+cn

Need T'(n) < kn, thus kn/2 + cn < kn, thus k > 2¢
Choosing k = 2¢ suffices and thus by induction T'(n) < 2cn = O(n)

Case g > 2

T(n) < qT(n/2) + cn, T(1) <c¢
T(n) < ¢T'(n/2) +cn
< ¢*T(n/4) +gen/2 + cn
< @PT(n/8) + ¢*en/4+ qen/2 + en

logn—1
< > en(q/2)
i=0
logn—1

=cn Y (q/2)
i=0

Case ¢ > 2 (continued)

logn—1

T(n)<cn > (q/2)"

i=0

2)losn — |
—en(20

(a/2)°"
< cn(%)

G
)n nloe(a/2)

=)
=)

271

n-nlogat

AAA
)
~
l\D
=

=

~
1\3
—

logg _ logq)

Summary

Useful general recurrence and its solutions:

‘ T(n)<q-T(n/2)+cn ‘

. q= work outside recursion dominates
2. ¢=2: T(n) =O(nlogn) equal contributions
O(nloe219) base-case subproblems dominate

w
Vv
N
=
2
I

Algorithms with these running times?
Mergesort. MSS

Counting inversions, Closest points, Integer multiplication

