
COMPSCI 311: Introduction to Algorithms
Lecture 8: Minimum Spanning Trees

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Spanning Trees and Cuts
I Given: an undirected graph G = (V, E) with edge costs

(weights) ce > 0 (distinct for now).

I Find: subset of edges T ⊆ E such that (V, T) is connected and
the total cost of edges in T is as small as possible. Call T ⊆ E a
spanning tree if (V, T) is a tree (connected, no cycles).

I Claim: in a minimum-cost solution, T is a spanning tree.

I This is the minimum spanning tree (MST) problem.

I Definition: A cut in G is a partition of the nodes into two
nonempty subsets (S, V − S).

I Definition: Edge e = (v, w) crosses cut (S, V − S) if v ∈ S and
w ∈ V − S
The cutset of a cut is the set of edges that cross the cut.

Minimum spanning trees: quiz 1

Consider the cut S = { 1, 4, 6, 7 }. Which edge is in the cutset of S?

A. S is not a cut (not connected)

B. 1–7

C. 5–7

D. 2–3

24

5

4

7

1
3

8

2

6

slide credit: Kevin Wayne / Pearson

Cut Property (IMPORTANT)

I Theorem (cut property): Let e = (v, w) be the
minimum-weight edge crossing cut (S, V − S) in G.
Then e belongs to every minimum spanning tree of G.

I Terminology:
I e is the cheapest or lightest edge across the cut
I It is safe to add e to a MST

I We will see two different greedy algorithms based on the cut
property: Kruskal’s algorithm and Prim’s algorithm.

Proof of Cut Property
I Let T be a spanning tree that doesn’t include e = (u, v).

We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T .
Since the path starts in S and ends up outside S, there must be
an edge e′ = (u′, v′) on this path where u′ ∈ S, v′ 6∈ S.

I Let T ′ = T − {e′}+ {e}.
This is still connected, since any path in T that needed e′ can be
routed via e instead, and it has no cycles, so it is a spanning tree.

I But since e was the lightest edge between S and V \ S,

w(T ′) = w(T)− w(e′) + w(e) ≤ w(T)− w(e′) + w(e′) = w(T)

What’s wrong with the following proof ?
I Let T be a spanning tree so the cheapest edge e is not in T

I T must contain an edge f that links S to V − S

I e is the cheapest such edge, so T − {f} ∪ {e} is a cheaper tree.146 Chapter 4 Greedy Algorithms

S

v w

h

e�

e

f

v� w�

e can be swapped for e�.

Figure 4.10 Swapping the edge e for the edge e� in the spanning tree T , as described in
the proof of (4.17).

The problem with this argument is not in the claim that f exists, or that
T − {f } ∪ {e} is cheaper than T. The difficulty is that T − {f } ∪ {e} may not be
a spanning tree, as shown by the example of the edge f in Figure 4.10. The
point is that we can’t prove (4.17) by simply picking any edge in T that crosses
from S to V − S; some care must be taken to find the right one.

The Optimality of Kruskal’s and Prim’s Algorithms We can now easily
prove the optimality of both Kruskal’s Algorithm and Prim’s Algorithm. The
point is that both algorithms only include an edge when it is justified by the
Cut Property (4.17).

(4.18) Kruskal’s Algorithm produces a minimum spanning tree of G.

Proof. Consider any edge e = (v, w) added by Kruskal’s Algorithm, and let
S be the set of all nodes to which v has a path at the moment just before
e is added. Clearly v ∈ S, but w �∈ S, since adding e does not create a cycle.
Moreover, no edge from S to V − S has been encountered yet, since any such
edge could have been added without creating a cycle, and hence would have
been added by Kruskal’s Algorithm. Thus e is the cheapest edge with one end
in S and the other in V − S, and so by (4.17) it belongs to every minimum
spanning tree.

Figure: Kleinberg & Tardos

I T − {f} ∪ {e} may not be a tree!

Clicker Question 2: Properties of Spanning Trees

Which of the following is not true ?
I A: A spanning tree must intersect any cutset

I B: Adding an edge to a spanning tree produces at least two cycles

I C: Swapping a tree edge with another edge from the same cutset
may produce a cycle

I D: The union of two different spanning trees produces a cycle

Fundamental cycle. Let H = (V, T) be a spanning tree of G = (V, E).

独For any non tree-edge e ∈ E : T ∪ { e } contains a unique cycle, say C.

独For any edge f ∈ C : T ∪ { e } – { f } is a spanning tree.

 
 
 
 
 
 
 
 
 
 
 
 
 
Observation. If ce < cf, then (V, T) is not an MST.

Fundamental cycle

35

e

f

graph G = (V, E)
spanning tree H = (V, T)

slide credit: Kevin Wayne / Pearson

Fundamental cutset

Fundamental cutset. Let H = (V, T) be a spanning tree of G = (V, E).

独For any tree edge f ∈ T : T – { f } contains two connected components.

Let D denote corresponding cutset.

独For any edge e ∈ D : T – { f } ∪ { e } is a spanning tree.

 
 
 
 
 
 
 
 
 
 
 
 
Observation. If ce < cf, then (V, T) is not an MST.

36

e

f

graph G = (V, E)
spanning tree H = (V, T)

slide credit: Kevin Wayne / Pearson

Kruskal’s algorithm

I Armed with the cut property, how can we find a MST?
I Starting no edges, which edge do we add first?

How can we prove it is safe to add?
I What edge do we add next? How do we prove it is safe?
I Next?
I Does this get stuck? If so, how to fix? Need to prove.

I Kruskal’s algorithm: add edges in order of increasing weight,
as long as they don’t cause a cycle.

Kruskal’s algorithm

Assume edges are numbered e = 1, . . . , m
Sort edges by weight so c1 ≤ c2 ≤ . . . ≤ cm

Initialize T = {}
for e = 1 to m do

if adding e to T does not form a cycle then
T = T ∪ {e}

end if
end for

Exercise: argue correctness (use cut property)

Kruskal’s algorithm proof

I Let T be the partial spanning tree just before adding edge
e = (u, v) – the cheapest one not causing a cycle
I Let S be the connected component of T that contains u
I Then e crosses the cut (S, V − S), otherwise it would create

a cycle when added to T
I No other edge crossing (S, V − S) has been considered yet;

it could have been added without creating a cycle, and would
have connected S to V − S

I Therefore, e is the cheapest edge across (S, V − S), so it
belongs to every MST

I So, every edge added belongs to the MST
I The final T is a spanning tree, since the algorithm won’t stop

until the graph is connected, and by design it creates no cycles
I Therefore, the output is a MST

Prim’s Algorithm

I What if we want to grow a tree as a single connected component
starting from some vertex s?
I Which edge should we add first? How can we prove it is safe?
I Which edge should we add next? How can we prove it is safe?

I Prim’s algorithm: Let S be the connected component
containing s. Add the cheapest edge from S to V \ S.

Prim’s Algorithm

Initialize T = {}
Initialize S = {s}
while |S| < n do

Let e = (u, v) be the minimum-cost edge from S to V − S
T = T ∪ {e}
S = S ∪ {v}

end while

Exercise: prove correctness

Clicker Question 3

Which of the following is always true?

A: Kruskal’s algorithm creates disconnected trees and links them

B: Prim’s and Kruskal’s algorithm choose edges in different order

C: Prim’s and Kruskal’s algorithm choose the same set of edges

D: Only one of the algorithms is greedy

Exercise: Prove that the minimum spanning tree is unique (C).

Prim’s algorithm proof

I Let T be the partial spanning tree just before adding edge e

I Let S be the connected component containing s
I By construction, e is the cheapest edge across the cut

(S, V − S)
I Therefore, e belongs to every MST

I So, every edge added belongs to the MST

I The algorithm creates no cycles and does not stop until the
graph is connected, therefore, the final output is a spanning tree

I The final output is a minimum-spanning tree

Remove Distinctness Assumption?

I Hack: break ties in weights by perturbing each edge weight by a
tiny unique amount.

I Implementation: break ties in an arbitrary but consistent way
(e.g., lexicographic order)

I This is correct. There is a slightly more principled way that
requires a stronger cut property.

Implementation of Prim’s algorithm

Initialize T = {}
Initialize S = {s}
while T is not a spanning tree do

Let e = (u, v) be the minimum-cost edge from S to V − S
T = T ∪ {e}
S = S ∪ {s}

end while

What does this remind you of?

Prim Implementation

Set A = V . Unattached nodes
Set a(v) =∞ for all nodes . Attachment cost
Set a(s) = 0
Set edgeTo(s) = null . Attachment edge
while A not empty do . Nodes left to attach

Extract node v ∈ A with smallest a(v) value
Set T = T ∪ edgeTo(v)
for all edges (v, w) where w ∈ A do

if c(v, w) < a(w) then . Cheaper edge to w?
a(w) = c(v, w)
edgeTo(w) = (v, w)

end if
end for

end while

Nearly identical to Dijkstra. Priority queue for A → O(m log n)

Kruskal Implementation?

Sort edges by weight so c1 ≤ c2 ≤ . . . ≤ cm

Initialize T = {}
for e = 1 to m do

if adding e = (u, v) to T does not form a cycle then
T = T ∪ {e}

end if
end for

Ideas?

BFS to check if u and v in same connected component: O(mn).

(Each BFS is O(n): why?)

Can we do better?

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components
of growing spanning tree. Should support:
I find(v): return name of set containing v
I Union(A, B): merge two sets
for e = 1 to m do

Let u and v be endpoints of e
if find(u) != find(v) then . Not in same component?

T = T ∪ {e}
Union(find(u), find(v)) . Merge components

end if
end for

Goal: union = O(1), find = O(log n) ⇒ O(m log n) overall

Union-Find Data Structure

I Forest of trees with links to parent

X

Y

Z

union(X,Y)
union(Y,Z)

S

T

union(S, T) X

Y

Z

S

T

union(S, Y)

I Find(X): follow pointers to root (equivalence class representative)
I Union(X, Y): links root of X to root of Y
I How to avoid trees degenerating to lists?

Link smaller equivalence class (tree) to larger one

Union-Find Complexity

I Union is O(1): update one pointer

I Find is O(log n):
follow at most log2(n) pointers to find representative of set

I Better: path compression (Find links all traversed nodes to root)
essentially constant time

