COMPSCI 311: Introduction to Algorithms

Lecture 8: Minimum Spanning Trees

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Spanning Trees and Cuts

> Given: an undirected graph G = (V, E) with edge costs
(weights) ¢, > 0 (distinct for now).

» Find: subset of edges T' C E such that (V,T) is connected and
the total cost of edges in T is as small as possible. Call T C E a
spanning tree if (V,T') is a tree (connected, no cycles).

» Claim: in a minimum-cost solution, 7" is a spanning tree.

» This is the minimum spanning tree (MST) problem.

» Definition: A cut in G is a partition of the nodes into two
nonempty subsets (S,V — 5.

» Definition: Edge e = (v, w) crosses cut (S,V —S5) if v € S and
weV -5
The cutset of a cut is the set of edges that cross the cut.

Minimum spanning trees: quiz 1

Consider the cut S = { 1, 4, 6, 7 }. Which edge is in the cutset of S?

A. Sis not a cut (not connected)
B. 17
C. 57
D. 2-3

slide credit: Kevin Wayne / Pearson

Cut Property (IMPORTANT)

» Theorem (cut property): Let e = (v, w) be the
minimum-weight edge crossing cut (S,V — S) in G.
Then e belongs to every minimum spanning tree of G.

» Terminology:
» ¢ is the cheapest or lightest edge across the cut
> It is safe to add e to a MST

» We will see two different greedy algorithms based on the cut
property: Kruskal's algorithm and Prim’s algorithm.

Proof of Cut Property

» Let T be a spanning tree that doesn't include e = (u, v).
We'll construct a different spanning tree T” such that
w(T') < w(T) and hence T can’t be the MST.

» Since T is a spanning tree, there's a u ~» v path P in T
Since the path starts in .S and ends up outside S, there must be
an edge ¢/ = (u/,v) on this path where v/ € S,v" & S.

> Let T/ =T —{e'} + {e}.

This is still connected, since any path in T that needed ¢’ can be
routed via e instead, and it has no cycles, so it is a spanning tree.

» But since e was the lightest edge between S and V' \ S,

w(T") = w(T) —w(e) +w(e) < w(T) —w(e) +w(e) =w(T)

What's wrong with the following proof 7
» Let T be a spanning tree so the cheapest edge ¢ is not in T’

» T must contain an edge f that links S to V — S

» e is the cheapest such edge, so T — {f} U {e} is a cheaper tree.

Figure: Kleinberg & Tardos

> T — {f}U{e} may not be a tree!

Clicker Question 2: Properties of Spanning Trees

Which of the following is not true ?

» A: A spanning tree must intersect any cutset
» B: Adding an edge to a spanning tree produces at least two cycles

» C: Swapping a tree edge with another edge from the same cutset
may produce a cycle

» D: The union of two different spanning trees produces a cycle

Fundamental cycle

Fundamental cycle. Let H=(V,T) be a spanning tree of G=(V,E).
« For any non tree-edge e EE: T U { ¢} contains a unique cycle, say C.
* ForanyedgefeC: T U{e}-{f} isaspanning tree.

graph G = (V, E)
spanning tree H = (V, T)

Observation. If c. < ¢y, then (V,7) is not an MST.

35

slide credit: Kevin Wayne / Pearson

Fundamental cutset

Fundamental cutset. Let H=(V,T) be a spanning tree of G=(V,E).
« Forany tree edge fET: T - {f} contains two connected components.
Let D denote corresponding cutset.
« Forany edgee€D: T-{f} U{e}isaspanning tree.

graph G = (V, E)
spanning tree H = (V, T)

Observation. If c. < ¢, then (V,7) is not an MST.

slide credit: Kevin Wayne / Pearson

Kruskal's algorithm

» Armed with the cut property, how can we find a MST?

» Starting no edges, which edge do we add first?
How can we prove it is safe to add?
» What edge do we add next? How do we prove it is safe?
> Next?
» Does this get stuck? If so, how to fix? Need to prove.

» Kruskal’s algorithm: add edges in order of increasing weight,
as long as they don't cause a cycle.

Kruskal's algorithm

Assume edges are numbered e =1,...,m
Sort edges by weight so ¢ < ¢ <...<¢p
Initialize T = {}

for e =1 to m do
if adding e to T does not form a cycle then
T =TuU{e}
end if
end for

Exercise: argue correctness (use cut property)

Kruskal's algorithm proof

» Let T be the partial spanning tree just before adding edge
e = (u, v) — the cheapest one not causing a cycle
» Let S be the connected component of T that contains u
» Then e crosses the cut (S,V —5), otherwise it would create
a cycle when added to T'
> No other edge crossing (S,V — S) has been considered yet;
it could have been added without creating a cycle, and would
have connected Sto V — §
» Therefore, e is the cheapest edge across (S,V — S), so it
belongs to every MST
» So, every edge added belongs to the MST
» The final T is a spanning tree, since the algorithm won't stop
until the graph is connected, and by design it creates no cycles
» Therefore, the output is a MST

Prim’s Algorithm

» What if we want to grow a tree as a single connected component
starting from some vertex s?
» Which edge should we add first? How can we prove it is safe?
» Which edge should we add next? How can we prove it is safe?
» Prim'’s algorithm: Let S be the connected component
containing s. Add the cheapest edge from S to V' \ S.

Prim’s Algorithm

Initialize T = {}
Initialize S = {s}
while |S| < n do
Let e = (u, v) be the minimum-cost edge from S to V' — S

T=TU/{e}
S=85U{v}
end while

Exercise: prove correctness

Clicker Question 3

Which of the following is always true?

A: Kruskal's algorithm creates disconnected trees and links them
B: Prim’s and Kruskal's algorithm choose edges in different order
C: Prim's and Kruskal's algorithm choose the same set of edges

D: Only one of the algorithms is greedy

Exercise: Prove that the minimum spanning tree is unique (C).

Prim's algorithm proof

» Let T be the partial spanning tree just before adding edge e

» Let S be the connected component containing s

» By construction, e is the cheapest edge across the cut
(S, V-25)

» Therefore, e belongs to every MST

» So, every edge added belongs to the MST

» The algorithm creates no cycles and does not stop until the
graph is connected, therefore, the final output is a spanning tree

» The final output is a minimum-spanning tree

Remove Distinctness Assumption?

» Hack: break ties in weights by perturbing each edge weight by a
tiny unique amount.

» Implementation: break ties in an arbitrary but consistent way
(e.g., lexicographic order)

» This is correct. There is a slightly more principled way that
requires a stronger cut property.

Implementation of Prim’s algorithm

Initialize T = {}
Initialize S = {s}
while T is not a spanning tree do
Let e = (u,v) be the minimum-cost edge from S to V — 5

T=TU/{e}
S=8U{s}
end while

What does this remind you of?

Prim Implementation

Set A=V > Unattached nodes
Set a(v) = oo for all nodes > Attachment cost
Set a(s) =0

Set edgeTo(s) = null > Attachment edge
while A not empty do > Nodes left to attach
Extract node v € A with smallest a(v) value
Set T =T U edgeTo(v)
for all edges (v, w) where w € A do
if ¢(v,w) < a(w) then
a(w) = ¢(v, w)
edgeTo(w) = (v, w)
end if
end for
end while

> Cheaper edge to w?

Nearly identical to Dijkstra. Priority queue for A — O(mlogn)

Kruskal Implementation?

Sort edges by weight so ¢; < ¢y <... < ¢
Initialize T = {}
for e =1 to m do
if adding ¢ = (u,v) to T' does not form a cycle then
T=TuU({e}
end if
end for

Ideas?

BFS to check if u and v in same connected component: O(mn).
(Each BFS is O(n): why?)

Can we do better?

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components
of growing spanning tree. Should support:

» find(v): return name of set containing v
» Union(A, B): merge two sets
for e =1 to m do
Let u and v be endpoints of e
if find(u) != find(v) then
T =TuU{e}
Union(find(u), find(v))
end if
end for

> Not in same component?

> Merge components

Goal: union = O(1), find = O(logn) = O(mlogn) overall

Union-Find Data Structure

» Forest of trees with links to parent

Z
2]
I |
Y]

union(S, T)

union(X,Y) .
' Y
union(Y,Z) union(S,)
» Find(X): follow pointers to root (equivalence class representative)
» Union(X, Y): links root of X to root of Y
» How to avoid trees degenerating to lists?
Link smaller equivalence class (tree) to larger one

Union-Find Complexity

» Union is O(1): update one pointer

» Find is O(logn):
follow at most log,(n) pointers to find representative of set

» Better: path compression (Find links all traversed nodes to root)
essentially constant time

