

Prim's Algorithm	Prim's Algorithm
 What if we want to grow a tree as a <i>single</i> connected component starting from some vertex s? Which edge should we add first? How can we prove it is safe? Which edge should we add next? How can we prove it is safe? Prim's algorithm: Let S be the connected component containing s. Add the cheapest edge from S to V \ S. 	Initialize $T = \{\}$ Initialize $S = \{s\}$ while $ S < n$ do Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$ $T = T \cup \{e\}$ $S = S \cup \{v\}$ end while Exercise: prove correctness
Clicker Question 3	Prim's algorithm proof
Which of the following is always true? A: Kruskal's algorithm creates disconnected trees and links them B: Prim's and Kruskal's algorithm choose edges in different order C: Prim's and Kruskal's algorithm choose the same set of edges D: Only one of the algorithms is greedy Exercise: Prove that the minimum spanning tree is unique (C).	 Let T be the partial spanning tree just before adding edge e Let S be the connected component containing s By construction, e is the cheapest edge across the cut (S, V - S) Therefore, e belongs to every MST So, every edge added belongs to the MST The algorithm creates no cycles and does not stop until the graph is connected, therefore, the final output is a spanning tree The final output is a minimum-spanning tree
Remove Distinctness Assumption?	Implementation of Prim's algorithm
 Hack: break ties in weights by perturbing each edge weight by a tiny unique amount. Implementation: break ties in an arbitrary but consistent way (e.g., lexicographic order) This is correct. There is a slightly more principled way that requires a stronger cut property. 	Initialize $T = \{\}$ Initialize $S = \{s\}$ while T is not a spanning tree do Let $e = (u, v)$ be the minimum-cost edge from S to $V - S$ $T = T \cup \{e\}$ $S = S \cup \{s\}$ end while What does this remind you of?

