

Proof of Cut Property

- Let T be a spanning tree that doesn't include $e=(u, v)$. We'll construct a different spanning tree T^{\prime} such that $w\left(T^{\prime}\right)<w(T)$ and hence T can't be the MST.
- Since T is a spanning tree, there's a $u \rightsquigarrow v$ path P in T. Since the path starts in S and ends up outside S, there must be an edge $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ on this path where $u^{\prime} \in S, v^{\prime} \notin S$.
- Let $T^{\prime}=T-\left\{e^{\prime}\right\}+\{e\}$.

This is still connected, since any path in T that needed e^{\prime} can be routed via e instead, and it has no cycles, so it is a spanning tree.

- But since e was the lightest edge between S and $V \backslash S$,
$w\left(T^{\prime}\right)=w(T)-w\left(e^{\prime}\right)+w(e) \leq w(T)-w\left(e^{\prime}\right)+w\left(e^{\prime}\right)=w(T)$

Spanning Trees and Cuts

- Given: an undirected graph $G=(V, E)$ with edge costs (weights) $c_{e}>0$ (distinct for now).
- Find: subset of edges $T \subseteq E$ such that (V, T) is connected and the total cost of edges in T is as small as possible. Call $T \subseteq E$ a spanning tree if (V, T) is a tree (connected, no cycles).
- Claim: in a minimum-cost solution, T is a spanning tree.
- This is the minimum spanning tree (MST) problem.
- Definition: A cut in G is a partition of the nodes into two nonempty subsets $(S, V-S)$.
- Definition: Edge $e=(v, w)$ crosses cut $(S, V-S)$ if $v \in S$ and $w \in V-S$
The cutset of a cut is the set of edges that cross the cut.

Cut Property (IMPORTANT)

- Theorem (cut property): Let $e=(v, w)$ be the minimum-weight edge crossing cut $(S, V-S)$ in G.
Then e belongs to every minimum spanning tree of G.
- Terminology:
- e is the cheapest or lightest edge across the cut
- It is safe to add e to a MST
- We will see two different greedy algorithms based on the cut property: Kruskal's algorithm and Prim's algorithm.

What's wrong with the following proof ?

- Let T be a spanning tree so the cheapest edge e is not in T
- T must contain an edge f that links S to $V-S$
- e is the cheapest such edge, so $T-\{f\} \cup\{e\}$ is a cheaper tree.

Figure: Kleinberg \& Tardos

- $T-\{f\} \cup\{e\}$ may not be a tree!

Clicker Question 2: Properties of Spanning Trees

Which of the following is not true ?

- A: A spanning tree must intersect any cutset
- B: Adding an edge to a spanning tree produces at least two cycles
- C: Swapping a tree edge with another edge from the same cutset may produce a cycle
- D: The union of two different spanning trees produces a cycle

Fundamental cycle

Fundamental cycle. Let $H=(V, T)$ be a spanning tree of $G=(V, E)$.

- For any non tree-edge $e \in E: T \cup\{e\}$ contains a unique cycle, say C.
- For any edge $f \in C: T \cup\{e\}-\{f\}$ is a spanning tree.

Observation. If $c_{e}<c_{f}$, then (V, T) is not an MST.

Kruskal's algorithm

- Armed with the cut property, how can we find a MST?
- Starting no edges, which edge do we add first? How can we prove it is safe to add?
- What edge do we add next? How do we prove it is safe?
- Next?
- Does this get stuck? If so, how to fix? Need to prove
- Kruskal's algorithm: add edges in order of increasing weight, as long as they don't cause a cycle.

Assume edges are numbered $e=1, \ldots, m$
Sort edges by weight so $c_{1} \leq c_{2} \leq \ldots \leq c_{m}$
Initialize $T=\{ \}$
for $e=1$ to m do
if adding e to T does not form a cycle then
$T=T \cup\{e\}$
end if
end for
Exercise: argue correctness (use cut property)

Kruskal's algorithm proof

- Let T be the partial spanning tree just before adding edge $e=(u, v)$ - the cheapest one not causing a cycle
- Let S be the connected component of T that contains u
- Then e crosses the cut $(S, V-S)$, otherwise it would create a cycle when added to T
- No other edge crossing $(S, V-S)$ has been considered yet; it could have been added without creating a cycle, and would have connected S to $V-S$
- Therefore, e is the cheapest edge across $(S, V-S)$, so it belongs to every MST
- So, every edge added belongs to the MST
- The final T is a spanning tree, since the algorithm won't stop until the graph is connected, and by design it creates no cycles
- Therefore, the output is a MST

Prim's Algorithm

- What if we want to grow a tree as a single connected component starting from some vertex s ?
- Which edge should we add first? How can we prove it is safe?
- Which edge should we add next? How can we prove it is safe?
- Prim's algorithm: Let S be the connected component containing s. Add the cheapest edge from S to $V \backslash S$.

Prim's Algorithm

```
Initialize \(T=\{ \}\)
Initialize \(S=\{s\}\)
while \(|S|<n\) do
Let \(e=(u, v)\) be the minimum-cost edge from \(S\) to \(V-S\)
    \(T=T \cup\{e\}\)
    \(S=S \cup\{v\}\)
end while
```

Exercise: prove correctness

Clicker Question 3

Which of the following is always true?
A: Kruskal's algorithm creates disconnected trees and links them
B: Prim's and Kruskal's algorithm choose edges in different order
C: Prim's and Kruskal's algorithm choose the same set of edges
D: Only one of the algorithms is greedy

Exercise: Prove that the minimum spanning tree is unique (C).

Prim's algorithm proof

- Let T be the partial spanning tree just before adding edge e
- Let S be the connected component containing s
- By construction, e is the cheapest edge across the cut (S,V-S)
- Therefore, e belongs to every MST
- So, every edge added belongs to the MST
- The algorithm creates no cycles and does not stop until the graph is connected, therefore, the final output is a spanning tree
- The final output is a minimum-spanning tree

Implementation of Prim's algorithm

Initialize $T=\{ \}$
Initialize $S=\{s\}$
while T is not a spanning tree do
Let $e=(u, v)$ be the minimum-cost edge from S to $V-S$
$T=T \cup\{e\}$
$S=S \cup\{s\}$
end while

What does this remind you of?

Nearly identical to Dijkstra. Priority queue for $A \rightarrow O(m \log n)$

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning tree. Should support:

- find (v) : return name of set containing v
- Union (A, B) : merge two sets
for $e=1$ to m do
Let u and v be endpoints of e
if find $(u)!=$ find (v) then $\quad \triangleright$ Not in same component? $T=T \cup\{e\}$
Union $($ find (u), find $(v)) \quad \triangleright$ Merge components
end if
end for

Goal: union $=O(1)$, find $=O(\log n) \Rightarrow O(m \log n)$ overall

Kruskal Implementation?

$$
\begin{aligned}
& \text { Sort edges by weight so } c_{1} \leq c_{2} \leq \ldots \leq c_{m} \\
& \text { Initialize } T=\{ \} \\
& \text { for } e=1 \text { to } m \text { do } \\
& \quad \text { if adding } e=(u, v) \text { to } T \text { does not form a cycle then } \\
& \quad T=T \cup\{e\} \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

Ideas?

BFS to check if u and v in same connected component: $O(m n)$.
(Each BFS is $O(n)$: why?)
Can we do better?

Union-Find Data Structure

Forest of trees with links to parent

Z
\uparrow
Y
Y
X

union (X, Y) union (Y, Z)

- Find (X) : follow pointers to root (equivalence class representative)
- Union(X, Y): links root of X to root of Y
- How to avoid trees degenerating to lists? Link smaller equivalence class (tree) to larger one

