COMPSCI 311: Introduction to Algorithms
Lecture 7: Shortest Paths
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon

Shortest Paths Problem

Suppose all edges have integer length.
Can we use BFS to solve this problem?

Shortest Paths Problem

Problem: find shortest paths in a directed graph with edge lengths (e.g., Google maps)

Shortest paths: quiz 2

Which variant in car GPS?

A. Single source: from one node s to every other node.
B. Single sink: from every node to one node t.
C. Source-sink: from one node s to another node t.
D. All pairs: between all pairs of nodes.

slide credit: Kevin Wayne / Pearson

Shortest Paths Problem

Shortest Paths Problem

Shortest Paths Problem

Dijkstra's Algorithm

$$
\begin{array}{lr}
\text { Set } A=V & \triangleright \text { Priority queue } \\
\text { Set } d^{\prime}(v)=\infty \text { for all nodes } & \triangleright \text { Tentative arrival time } \\
\text { Set } d^{\prime}(s)=0 & \\
\text { while } A \text { not empty do } & \text { Nodes left to explore } \\
\text { Extract node } v \in A \text { with smallest } d^{\prime}(v) \text { value } & \\
\begin{array}{l}
\text { Set } d(v)=d^{\prime}(v) \\
\text { for all edges }(v, w) \text { where } w \in A \text { do } \\
\text { if } d(v)+\ell(v, w)<d^{\prime}(w) \text { then } \\
\quad d^{\prime}(w)=d(v)+\ell(v, w) \\
\text { end if }
\end{array} & \triangleright \text { Wave arrives at } v \\
\text { end for } & \triangleright \text { Better offer? } \\
\text { end while } &
\end{array}
$$

Running Time?	
Use heap-based priority queue for A	
Set $A=V$	
Set $d^{\prime}(v)=\infty$ for all nodes Set $d^{\prime}(s)=0$ while A not empty do Extract node $v \in A$ with smallest $d^{\prime}(v)$ value Set $d(v)=d^{\prime}(v)$ for all edges (v, w) where $w \in A$ do if $d(v)+\ell(v, w)<d^{\prime}(w)$ then $d^{\prime}(w)=d(v)+\ell(v, w)$ end if end for end while n extract-min operations. $O(n \log n)$ m update-key operations. $O(m \log n)$	\triangleright Extract-min
Total: $O((m+n) \log n)$	

Use heap-based priority queue for A
Set $A=V$
Set $d^{\prime}(v)=\infty$ for all nodes
Set $d^{\prime}(s)=0$
le not empty do
Extract node $v \in A$ with smallest $d^{\prime}(v)$ value $\quad \triangleright$ Extract-min
Set $d(v)=d^{\prime}(v)$
if $d(v)+\ell(v, w)<d^{\prime}(w)$ then
$d^{\prime}(w)=d(v)+\ell(v, w) \quad \triangleright$ Update-key
end
end while
- n extract-min operations. $O(n \log n)$
- Total: $O((m+n) \log n)$

Proof of Correctness

- Let $S=V \backslash A$ be the set of explored nodes at any point in the algorithm-those v for which we have assigned $d(v)$
- Observation: for $v \notin S$, the value $d^{\prime}(v)$ is the minimum value $d(u)+\ell(u, v)$ over all edges (u, v) where $u \in S, v \notin S$.
- length of shortest path to v that remains in S until final hop.
- Claim (invariant): for $v \in S$, the value $d(v)$ is the length of the shortest $s \rightsquigarrow v$-path
- Proof: By induction on $|S|$

Finding the Actual Path

Keep track of node that last updated arrival time $d^{\prime}(v)$
Call it $\operatorname{prev}(v)=$ predecessor in shortest path

```
Set \(A=V\)
Set \(d^{\prime}(v)=\infty\) for all nodes
Set \(\operatorname{prev}(v)=\) null
Set \(d^{\prime}(s)=0\)
while \(A\) not empty do
    Extract node \(v \in A\) with smallest \(d^{\prime}(v)\) value
    Set \(d(v)=d^{\prime}(v)\)
    for all edges \((v, w)\) where \(w \in A\) do
            if \(d(v)+\ell(v, w)<d^{\prime}(w)\) then
                \(d^{\prime}(w)=d(v)+\ell(v, w)\)
                \(\operatorname{prev}(w)=v\)
            end if
    end for
end while
```

Proof (by induction)

- Base case: Initially $S=\{s\}$ and $d(s)=0$.
- Induction step:
- Assume the invariant is true after the k th execution of the while loop, when $|S|=k$.
- Let v be the next node added to S, and let (u, v) be the preceding edge.
Then $d^{\prime}(v)=d(u)+\ell(u, v)$, and $d^{\prime}(v) \leq d^{\prime}(x)$ for any node $x \notin S$.
- Let P_{u} be the shortest $s \rightsquigarrow u$ path, which has length $d(u)$
- Let $P_{v}=P_{u} \cup(u, v)$ be the path found by Dijkstra, which has length $\ell\left(P_{v}\right)=d^{\prime}(v)=d(u)+\ell(u, v)$

Clicker Question \#2

Dijkstra's algorithm works for nonnegative edges.
(We'll discuss the Bellman-Ford algorithm, which can handle negative edges.)

In general, there exists a shortest $s \rightsquigarrow v$ path if
A) There are no negative-length edges on any path $s \rightsquigarrow v$

- B) There is no negative-length cycle on any path $s \rightsquigarrow v$
- C) Any path $s \rightsquigarrow v$ that has a negative-length cycle also has a positive-length cycle
- D) Any path $s \rightsquigarrow v$ that has a negative-length cycle also has a positive-length cycle, longer in absolute value

Dijkstra's algorithm: which priority queue?				
Performance. Depends on PQ: n Insert, n Delete-Min, $\leq m$ Decrease-Key. - Array implementation optimal for dense graphs. $\longleftarrow \Theta\left(n^{2}\right)$ edges - Binary heap much faster for sparse graphs. \qquad $\Theta(n)$ edges - 4-way heap worth the trouble in performance-critical situations.				
priority queue	INSERT	Delete-Min	Decrease-Key	total
unordered array	$O(1)$	$O(n)$	$O(1)$	$O\left(n^{2}\right)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
$\begin{aligned} & \text { d-way heap } \\ & \text { (Johnson 1975) } \end{aligned}$	$O\left(d \log _{d} n\right)$	$O\left(d \log _{d} n\right)$	$O\left(\log _{d} n\right)$	$O\left(m \log _{m / n} n\right)$
$\begin{gathered} \text { Fibonacci heap } \\ \text { (Fredman-Tarjan 1984) } \end{gathered}$	$O(1)$	$O(\log n)^{\dagger}$	$O(1) \dagger$	$O(m+n \log n)$
integer priority queue (Thorup 2004)	$O(1)$	$O(\log \log n)$	$O(1)$	$O(m+n \log \log n)$
			slide credit:	〒 amortized Kevin Wayne / Pearson

Integers: Special Case

Thorup 1999: Solved single-source shortest paths problem in undirected graphs with positive integer edge lengths in $O(m)$ time.

Does not explore nodes by increasing distance from s.
Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

MIKKEL THORUP
AT\&T Labs Research, Florham Park, New Jersey
Abstract. The single-source shortest paths problem (SSSP) is one of the classic problems in
Abstract. The single-source shortest paths problem (sSS) is one of the classic problems in
path from s to all other vertices in the graph.
Since 1959, all theoretical developments in SSSP for general directed and undirected graphs have
been based on Diikstra's algorithm, visiting the vertice in in order of been based on Dijkstra's algorithm, visiting the vertices in order of increasing distance from s. Thus,
any implementation of Dijkstra's algorithm sorts the vertices according to their distances from s.
However, we do not know how to sort in linear time.
Here, a deterministic linear time and linear space a
source shortest paths problem with positive integer weights. The algorithm avoids the sorting
bottleneck by building a hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

Spanning Trees

Cuts in Graphs

- A key to understanding MSTs is a concept called a cut.
- Definition: A cut in G is a partition of the nodes into two nonempty subsets $(S, V-S)$.
- Definition: Edge $e=(v, w)$ crosses cut $(S, V-S)$ if $v \in S$ and $w \in V-S$.
The cutset of a cut is the set of edges that cross the cut.

Network Design Problem

- Given: an undirected graph $G=(V, E)$ with edge costs (weights) $c_{e}>0$.
Assume for now that all edge weights are distinct.
- Find: subset of edges $T \subseteq E$ such that (V, T) is connected and the total cost of edges in T is as small as possible
- Call $T \subseteq E$ a spanning tree if (V, T) is a tree (connected, no cycles)
- Claim: in a minimum-cost solution, T is a spanning tree.

This is the minimum spanning tree (MST) problem.

Minimum spanning trees: quiz 2

Let C be a cycle and let D be a cutset. How many edges do C and D have in common? Choose the best answer.
A. 0
B. 2
C. not 1
D. an even number

