
COMPSCI 311: Introduction to Algorithms
Lecture 7: Shortest Paths

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Shortest Paths Problem

Problem: find shortest paths in a directed graph with edge lengths
(e.g., Google maps)

Let’s Formalize the Problem
I Directed graph G = (V, E) with

edge lengths `(e) > 0

I Define length of path P consisting
of edges e1, e2, . . . , ek as

`(P) = `(e1) + `(e2) + . . . + `(ek)

I Starting node s

I Let d(v) be the length of shortest
s v path.

I Problem: Can we efficiently find
d(v) for all nodes v ∈ V ?

I Question: Why for all nodes at the
same time?

Shortest paths: quiz 2

Which variant in car GPS?

A. Single source: from one node s to every other node.

B. Single sink: from every node to one node t.

C. Source–sink: from one node s to another node t.

D. All pairs: between all pairs of nodes.

6

slide credit: Kevin Wayne / Pearson

Shortest Paths Problem

Suppose all edges have integer length.
Can we use BFS to solve this problem?

Shortest Paths Problem

Shortest Paths Problem Shortest Paths Problem

Shortest Paths Problem Shortest Paths Problem

Idea: keep track of the “wavefront”
I d′(v) — best tentative arrival time so far for node v
I d(v) — actual arrival time

What’s required to keep track of the wavefront?
I Find next arrival: node v with smallest d′(v)
I Set arrival time: d(v) = d′(v)
I Update d′(v) for neighbors of v if they get better “offers”

What data structure supports find smallest and update values?
Priority queue.

Shortest Paths Problem Dijkstra’s Algorithm

Set A = V . Priority queue
Set d′(v) =∞ for all nodes . Tentative arrival time
Set d′(s) = 0
while A not empty do . Nodes left to explore

Extract node v ∈ A with smallest d′(v) value
Set d(v) = d′(v) . Wave arrives at v
for all edges (v, w) where w ∈ A do

if d(v) + `(v, w) < d′(w) then . Better offer?
d′(w) = d(v) + `(v, w)

end if
end for

end while

Running Time?
Use heap-based priority queue for A

Set A = V
Set d′(v) =∞ for all nodes
Set d′(s) = 0
while A not empty do

Extract node v ∈ A with smallest d′(v) value . Extract-min
Set d(v) = d′(v)
for all edges (v, w) where w ∈ A do

if d(v) + `(v, w) < d′(w) then
d′(w) = d(v) + `(v, w) . Update-key

end if
end for

end while

I n extract-min operations. O(n log n)
I m update-key operations. O(m log n)
I Total: O((m + n) log n)

Finding the Actual Path

Keep track of node that last updated arrival time d′(v)
Call it prev(v) = predecessor in shortest path

Set A = V
Set d′(v) =∞ for all nodes
Set prev(v) = null
Set d′(s) = 0
while A not empty do

Extract node v ∈ A with smallest d′(v) value
Set d(v) = d′(v)
for all edges (v, w) where w ∈ A do

if d(v) + `(v, w) < d′(w) then
d′(w) = d(v) + `(v, w)
prev(w) = v

end if
end for

end while

Proof of Correctness

I Let S = V \A be the set of explored nodes at any point in the
algorithm—those v for which we have assigned d(v)

I Observation: for v /∈ S, the value d′(v) is the minimum value
d(u) + `(u, v) over all edges (u, v) where u ∈ S, v /∈ S.
I length of shortest path to v that remains in S until final hop.

I Claim (invariant): for v ∈ S, the value d(v) is the length of
the shortest s v-path

I Proof: By induction on |S|

Proof (by induction)
I Base case: Initially S = {s} and d(s) = 0.

I Induction step:
I Assume the invariant is true after the kth execution of the while

loop, when |S| = k.
I Let v be the next node added to S, and let (u, v) be the

preceding edge.
Then d′(v) = d(u) + `(u, v), and d′(v) ≤ d′(x) for any node
x 6∈ S.

I Let Pu be the shortest s u path, which has length d(u)
I Let Pv = Pu ∪ (u, v) be the path found by Dijkstra, which has

length `(Pv) = d′(v) = d(u) + `(u, v)

Induction Proof (cont.)

140 Chapter 4 Greedy Algorithms

x y

s
The alternate s–v path P through
x and y is already too long by
the time it has left the set S.

Set S

P�

Pu

u v

Figure 4.8 The shortest path Pv and an alternate s-v path P through the node y.

long as Pv by the time it has left the set S. Indeed, in iteration k + 1, Dijkstra’s
Algorithm must have considered adding node y to the set S via the edge (x, y)

and rejected this option in favor of adding v. This means that there is no path
from s to y through x that is shorter than Pv. But the subpath of P up to y is
such a path, and so this subpath is at least as long as Pv. Since edge lengths
are nonnegative, the full path P is at least as long as Pv as well.

This is a complete proof; one can also spell out the argument in the
previous paragraph using the following inequalities. Let P� be the subpath
of P from s to x. Since x ∈ S, we know by the induction hypothesis that Px is a
shortest s-x path (of length d(x)), and so �(P�) ≥ �(Px) = d(x). Thus the subpath
of P out to node y has length �(P�) + �(x, y) ≥ d(x) + �(x, y) ≥ d�(y), and the
full path P is at least as long as this subpath. Finally, since Dijkstra’s Algorithm
selected v in this iteration, we know that d�(y) ≥ d�(v) = �(Pv). Combining these
inequalities shows that �(P) ≥ �(P�) + �(x, y) ≥ �(Pv).

Here are two observations about Dijkstra’s Algorithm and its analysis.
First, the algorithm does not always find shortest paths if some of the edges
can have negative lengths. (Do you see where the proof breaks?) Many
shortest-path applications involve negative edge lengths, and a more com-
plex algorithm—due to Bellman and Ford—is required for this case. We will
see this algorithm when we consider the topic of dynamic programming.

The second observation is that Dijkstra’s Algorithm is, in a sense, even
simpler than we’ve described here. Dijkstra’s Algorithm is really a “contin-
uous” version of the standard breadth-first search algorithm for traversing a
graph, and it can be motivated by the following physical intuition. Suppose
the edges of G formed a system of pipes filled with water, joined together at
the nodes; each edge e has length �e and a fixed cross-sectional area. Now
suppose an extra droplet of water falls at node s and starts a wave from s. As
the wave expands out of node s at a constant speed, the expanding sphere

(Kleinberg & Tardos)

I Induction step: (cont.)
I Consider any other s v path P . We’ll argue that P is already

longer than Pv by the time it first leaves S.
I Let (x, y) be the first edge in P with x ∈ S, y /∈ S, and

let P ′ be the subpath of P from s to x
I Then,

`(P) ≥ `(P ′)+`(x, y) ≥ d(x)+`(x, y) ≥ d′(y) ≥ d′(v) = `(Pv)

Clicker Question #2

Dijkstra’s algorithm works for nonnegative edges.
(We’ll discuss the Bellman-Ford algorithm, which can handle
negative edges.)

In general, there exists a shortest s v path if
I A) There are no negative-length edges on any path s v

I B) There is no negative-length cycle on any path s v

I C) Any path s v that has a negative-length cycle also has a
positive-length cycle

I D) Any path s v that has a negative-length cycle also has a
positive-length cycle, longer in absolute value

Dijkstra′s algorithm: which priority queue?

Performance. Depends on PQ: n INSERT, n DELETE-MIN, ≤ m DECREASE-KEY.

独Array implementation optimal for dense graphs.

独Binary heap much faster for sparse graphs.

独4-way heap worth the trouble in performance-critical situations.

13

priority queue INSERT DELETE-MIN DECREASE-KEY total

unordered array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-way heap 
(Johnson 1975) O(d logd n) O(d logd n) O(logd n) O(m logm/n n)

Fibonacci heap 
(Fredman–Tarjan 1984) O(1) O(log n) † O(1) † O(m + n log n)

integer priority queue 
(Thorup 2004) O(1) O(log log n) O(1) O(m + n log log n)

† amortized

Θ(n2) edges

Θ(n) edges

slide credit: Kevin Wayne / Pearson

Integers: Special Case

Thorup 1999: Solved single-source shortest paths problem in
undirected graphs with positive integer edge lengths in O(m) time.

Does not explore nodes by increasing distance from s.

Undirected Single-Source Shortest Paths with Positive
Integer Weights in Linear Time

MIKKEL THORUP

AT&T Labs Research, Florham Park, New Jersey

Abstract. The single-source shortest paths problem (SSSP) is one of the classic problems in
algorithmic graph theory: given a positively weighted graph G with a source vertex s, find the shortest
path from s to all other vertices in the graph.

Since 1959, all theoretical developments in SSSP for general directed and undirected graphs have
been based on Dijkstra’s algorithm, visiting the vertices in order of increasing distance from s. Thus,
any implementation of Dijkstra’s algorithm sorts the vertices according to their distances from s.
However, we do not know how to sort in linear time.

Here, a deterministic linear time and linear space algorithm is presented for the undirected single
source shortest paths problem with positive integer weights. The algorithm avoids the sorting
bottleneck by building a hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—bounded-action devices (random access machines); F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures, sorting
and searching; G.2.2 [Discrete Mathematics]: Graph algorithms—computations on discrete structures,
sorting and searching

General Terms: Algorithms

Additional Key Words and Phrases: RAM algorithms, shortest paths

1. Introduction

Let G 5 (V, E), uV u 5 n, uE u 5 m , be an undirected connected graph with a
positive integer edge weight function ,: E 3 N and a distinguished source
vertex s [V. If (v , w) [y E, define ,(v , w) 5 `. The single source shortest path
problem (SSSP) is for every vertex v to find the distance d(v) 5 dist(s, v) from s
to v . This is one of the classic problems in algorithmic graph theory. In this

A preliminary short version of this paper appeared in Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science (FOCS ’97). IEEE Computer Society Press, Los Alamitos, Calif.,
pp. 12–21.
Some of this work was done while the author was at the University of Copenhagen.
Author’s address: AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932, e-mail: mthorup@
research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0500-0362 $5.00

Journal of the ACM, vol. 46, No. 3, May 1999, pp. 362–394.

Spanning Trees

Network Design Problem

I Given: an undirected graph G = (V, E) with edge costs
(weights) ce > 0.
Assume for now that all edge weights are distinct.

I Find: subset of edges T ⊆ E such that (V, T) is connected
and the total cost of edges in T is as small as possible

I Call T ⊆ E a spanning tree if (V, T) is a tree
(connected, no cycles)

I Claim: in a minimum-cost solution, T is a spanning tree.

I This is the minimum spanning tree (MST) problem.

Cuts in Graphs

I A key to understanding MSTs is a concept called a cut.

I Definition: A cut in G is a partition of the nodes into two
nonempty subsets (S, V − S).

I Definition: Edge e = (v, w) crosses cut (S, V − S) if v ∈ S
and w ∈ V − S.
The cutset of a cut is the set of edges that cross the cut.

Minimum spanning trees: quiz 2

Let C be a cycle and let D be a cutset. How many edges do C and D
have in common? Choose the best answer.

A. 0

B. 2

C. not 1

D. an even number

25

slide credit: Kevin Wayne / Pearson

