COMPSCI 311: Introduction to Algorithms Lecture 6: Greedy Algorithms – Exchange Arguments Marius Minea University of Massachusetts Amherst	Algorithm Design—Greedy Greedy: make a single "greedy" choice at a time, don't look back. Greedy Formulate problem ? Design algorithm easy Prove correctness hard Analyze running time easy
slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor	 Focus is on proof techniques Last time: "greedy stays ahead" (inductive proof) This time: exchange argument
 Scheduling to Minimize Lateness You have a very busy month: n assignments are due, with different deadlines Assignments: (len=1, due=2) (len=2, due=5) (len=2, due=6) len=2, due=7) Deadlines: d1 d2 d3 d4 0 1 2 3 4 5 6 7 8 9 How should you schedule your time to "minimize lateness"? 	Scheduling to Minimize LatenessLet's formalize the problem. The input is: $t_j = \text{length (in days) to complete assignment j (or "job" j)}$ $d_j = \text{deadline for assignment } j$ What does a schedule look like? $s_j = \text{start time for assignment } j$ (selected by algorithm) $f_j = s_j + t_j$ finish timeHow to evaluate a schedule?Lateness of assignment j is $\ell_j = \begin{cases} 0 & \text{if } f_j \leq d_j \\ f_j - d_j & \text{if } f_j > d_j \end{cases}$ Maximum lateness $L = \max_j \ell_j$ Goal: schedule so maximum lateness is as small as possible
 Clicker Question 1 An algorithm to minimize maximum lateness will also find a schedule that is not late, if that is possible ? A) Yes B) No, because the lateness function is not linear C) No, because it minimizes the maximum lateness, whereas we want all jobs to have lateness zero 	 Possible Greedy Approaches Note: scheduling work back-to-back (no idle time) can't hurt ⇒ schedule determined just by order of assignments 1: (len=1, due=2) 2: (len=2, due=5) 3: (len=3, due=6) 4: (len=2, due=7) What order should we choose? Shortest Length: ascending order of t_j. Smallest Slack: ascending order of d_j - t_j. Earliest Deadline: ascending order of d_j. Earliest deadline first is better in example. Let's prove it is always optimal.

] [
Clicker Question 2	Identical Maximum Lateness
	Claim: If in a schedule we swap two jobs with the same deadline, we get the same maximum lateness. True?
If two jobs have the same deadline, the earliest deadline first algorithm should schedule	Not necessarily, if the jobs are not in earliest deadline first order! (Example)
 A) The shortest job first, because that has a higher chance of finishing before the deadline 	Claim : If in an EDF schedule, we swap two jobs with the same deadline, we get the same maximum lateness.
 B) The longest job first, because then its lateness will be minimized C) Does not matter 	Proof: Since the schedules are EDF, all jobs with the same deadline are scheduled in a consecutive block. Then among those, the last one has the maximum lateness. That finishing time does not change by swapping schedules within the block.
	Corollary All EDF schedules have the same maximum lateness.
Exchange Argument (False Start)	Exchange Argument (Correct)
Assume jobs ordered by deadline $d_1 \leq d_2 \leq \ldots \leq d_n$, so the greedy ordering is simply	
4 10	Suppose O optimal and $O \neq A$. Then we can modify O to get a new solution O' that is:
$A = 1, 2, \dots, n$	1. No worse than O 2. Closer to A is some measurable way
Proof attempt : Suppose for contradiction that A is not optimal. Then, there is an optimal solution O with $O \neq A$	$O(optimal) \to O'(optimal) \to O''(optimal) \to \ldots \to A(optimal)$
 Since O ≠ A, there must be two jobs i and j that are out of order in O (e.g. O = 1,3,2,4) Let's swap i and j and show we get a <i>better</i> solution O' → O is not optimal. Contradiction so A must be optimal. 	High-level idea: gradually transform O into A without hurting solution, thus preserving optimality.
Problem? O' may still be optimal. Example?	Concretely: show 1 and 2 above.
Can't do proof by contradiction in this way.	
Exchange Argument for Scheduling to Minimize Lateness	Proof (Lateness does not increase)
Recall $A = 1, 2,, n$. For $S \neq A$, say there is an inversion if i comes before j but $j < i$ (thus $d_j \leq d_i$) Claim : if S has an inversion, S has a consecutive inversion—one where i comes immediately before j . Why?	Swapping a consecutive inversion (i precedes j ; $d_j \leq d_i$) ii
Main result : let $O \neq A$ be an optimal schedule. Then O has a consecutive inversion i, j . We can swap i and j to get a new schedule O' such that: 1. O' has one less inversion than O 2. Maximum lateness of O' is at most maximum lateness of O	Consider the lateness ℓ'_k of each job k in O' : If $k \notin \{i, j\}$, then lateness is unchanged: $\ell'_k = \ell_k$ Job j finishes earlier in O' than O : $\ell'_j \leq \ell_j$ Finish time of i in O' = finish time of j in O . Therefore
Proof:	$\ell'_i = f'_i - d_i = f_j - d_i \le f_j - d_j = \ell_j$
1. Obvious	
2. Next slide(s)	Conclusion : $\max_k \ell'_k \leq \max_k \ell_k$. Therefore O' is still optimal.

