
COMPSCI 311: Introduction to Algorithms
Lecture 6: Greedy Algorithms – Exchange Arguments

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Greedy
Formulate problem ?
Design algorithm easy
Prove correctness hard
Analyze running time easy

Focus is on proof techniques
I Last time: “greedy stays ahead” (inductive proof)
I This time: exchange argument

Scheduling to Minimize Lateness

I You have a very busy month: n assignments are due, with
different deadlines

Assignments:
1: |---| (len=1, due=2)
2: |---|---| (len=2, due=5)
3: |---|---|---| (len=3, due=6)
4: |---|---| (len=2, due=7)

Deadlines:
d1 d2 d3 d4

|---|---|---|---|---|---|---|---|---|
0 1 2 3 4 5 6 7 8 9

I How should you schedule your time to “minimize lateness”?

Scheduling to Minimize Lateness

Let’s formalize the problem. The input is:
I tj = length (in days) to complete assignment j (or “job” j)
I dj = deadline for assignment j

What does a schedule look like?
I sj = start time for assignment j (selected by algorithm)
I fj = sj + tj finish time

How to evaluate a schedule?

I Lateness of assignment j is `j =
{

0 if fj ≤ dj

fj − dj if fj > dj

I Maximum lateness L = maxj `j

Goal: schedule so maximum lateness is as small as possible

Clicker Question 1

An algorithm to minimize maximum lateness will also find a
schedule that is not late, if that is possible ?
I A) Yes

I B) No, because the lateness function is not linear

I C) No, because it minimizes the maximum lateness, whereas we
want all jobs to have lateness zero

Possible Greedy Approaches

I Note: scheduling work back-to-back (no idle time) can’t hurt
⇒ schedule determined just by order of assignments

1: |---| (len=1, due=2)
2: |---|---| (len=2, due=5)
3: |---|---|---| (len=3, due=6)
4: |---|---| (len=2, due=7)

I What order should we choose?
I Shortest Length: ascending order of tj .
I Smallest Slack: ascending order of dj − tj .
I Earliest Deadline: ascending order of dj .

I Earliest deadline first is better in example.
Let’s prove it is always optimal.

Clicker Question 2

If two jobs have the same deadline, the earliest deadline first
algorithm should schedule
I A) The shortest job first, because that has a higher chance of

finishing before the deadline

I B) The longest job first, because then its lateness will be minimized

I C) Does not matter

Identical Maximum Lateness

Claim: If in a schedule we swap two jobs with the same deadline, we
get the same maximum lateness. True?

Not necessarily, if the jobs are not in earliest deadline first order!
(Example)

Claim: If in an EDF schedule, we swap two jobs with the same
deadline, we get the same maximum lateness.

Proof: Since the schedules are EDF, all jobs with the same deadline
are scheduled in a consecutive block.
Then among those, the last one has the maximum lateness.
That finishing time does not change by swapping schedules within
the block.

Corollary All EDF schedules have the same maximum lateness.

Exchange Argument (False Start)
Assume jobs ordered by deadline d1 ≤ d2 ≤ ... ≤ dn, so the greedy
ordering is simply

A = 1, 2, . . . , n

Claim: A is optimal

Proof attempt: Suppose for contradiction that A is not optimal.
Then, there is an optimal solution O with O 6= A

I Since O 6= A, there must be two jobs i and j that are out of
order in O (e.g. O = 1, 3, 2, 4)

I Let’s swap i and j and show we get a better solution O′

I =⇒ O is not optimal. Contradiction, so A must be optimal.

Problem? O′ may still be optimal. Example?

Can’t do proof by contradiction in this way.

Exchange Argument (Correct)

Suppose O optimal and O 6= A. Then we can modify O to get a
new solution O′ that is:

1. No worse than O
2. Closer to A is some measurable way

O(optimal)→ O′(optimal)→ O′′(optimal)→ . . . → A(optimal)

High-level idea: gradually transform O into A without hurting
solution, thus preserving optimality.
Concretely: show 1 and 2 above.

Exchange Argument for Scheduling to Minimize Lateness

Recall A = 1, 2, . . . , n. For S 6= A, say there is an inversion if i
comes before j but j < i (thus dj ≤ di)
Claim: if S has an inversion, S has a consecutive inversion—one
where i comes immediately before j. Why?

Main result: let O 6= A be an optimal schedule. Then O has a
consecutive inversion i, j. We can swap i and j to get a new
schedule O′ such that:

1. O′ has one less inversion than O
2. Maximum lateness of O′ is at most maximum lateness of O

Proof:

1. Obvious

2. Next slide(s)

Proof (Lateness does not increase)

Swapping a consecutive inversion (i precedes j; dj ≤ di)
|-------i-------|---j---| O

dj di |---j---|-------i-------| O'
-----|-----|-->

Consider the lateness `′
k of each job k in O′:

I If k /∈ {i, j}, then lateness is unchanged: `′
k = `k

I Job j finishes earlier in O′ than O: `′
j ≤ `j

I Finish time of i in O′ = finish time of j in O. Therefore

`′
i = f ′

i − di = fj − di ≤ fj − dj = `j

Conclusion: maxk `′
k ≤ maxk `k. Therefore O′ is still optimal.

Wrap-Up

For any optimal O 6= A we showed that we could transform O to O′

such that:

1. O′ is still optimal
2. O′ has one less inversion than A

O(optimal)→ O′(optimal)→ O′′(optimal)→ . . .→ A(optimal)

Since there are at most
(n

2
)
inversions, by repeating the process a

finite number of times we see that A is optimal.

Coin changing

Goal. Given U. S. currency denominations { 1, 5, 10, 25, 100 }, 
devise a method to pay amount to customer using fewest coins. 
 
 
Ex. 34¢. 
 
 

Cashier′s algorithm. At each iteration, add coin of the largest value that

does not take us past the amount to be paid. 

 
Ex. $2.89.

3

slide credit: Kevin Wayne / Pearson

5

Is the cashier’s algorithm optimal?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations c1 < c2 < … < cn provided c1 = 1.

C. Yes, because of special properties of U.S. coin denominations.

D. No.

Greedy algorithms I: quiz 1

slide credit: Kevin Wayne / Pearson

Optimal offline caching: greedy algorithms

LIFO/FIFO. Evict item brought in least (most) recently.

LRU. Evict item whose most recent access was earliest.

LFU. Evict item that was least frequently requested.

39

cache miss
(which item to eject?)

⋮

a a w x y z

d a w x d z

a a w x d z

b a b x d z

c a b c d z

e a b c d e

g ? ? ? ? ?

b

e

d
⋮

cache

LIFO: eject e

LRU: eject d

FIFO: eject a

requests

slide credit: Kevin Wayne / Pearson

Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until 
farthest in the future.

 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem. [Bélády 1966] FF is optimal eviction schedule.

Pf. Algorithm and theorem are intuitive; proof is subtle.
40

cache miss
(which item to eject?)

a a b c d e

f ? ? ? ? ?

a

b

c

e

g

b

e

d
⋮

FF: eject d

requests

cache

slide credit: Kevin Wayne / Pearson

Wrap-Up: Greedy Algorithms

Greedy: make a single “greedy” choice at a time, don’t look back.

Greedy
Formulate problem ?
Design algorithm easy
Prove correctness hard
Analyze running time easy

Proof techniques
I Last time: “greedy stays ahead” (inductive proof)
I This time: exchange argument

Need to formulate precisely; careful not to get arguments wrong!

