
COMPSCI 311: Introduction to Algorithms
Lecture 5: Greedy Algorithms

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Greedy Algorithms

We are moving on to our study of algorithm design techniques:

I Greedy
I Divide-and-conquer
I Dynamic programming
I Network flow

Get a sense of “greedy” algorithms, then characterize them

Interval Scheduling

I In the 80s, your only opportunity to watch a specific TV show
was the time it was broadcast. Unfortunately, on a given night
there might be multiple shows that you want to watch and
some of the broadcast times overlap.

Example: [1, 4], [2, 3], [2, 7], [4, 7], [3, 6], [6, 10], [5, 7]

I You want to watch the highest number of shows. Which subset
of shows do you pick?

I Fine print: assume you like all shows equally, you only have one
TV, and you need to watch shows in their entirety.

Formalizing Interval Scheduling

Let’s formalize the problem
I Shows 1, 2, . . . , n

(more generally: “requests” to be fulfilled with a given
resource)

I sj : start time of show j
I fj , also written f(j): finish time of show j
I Shows i and j are compatible if they don’t overlap.
I Set A of shows is compatible all pairs in A are compatible.
I Set A of shows is optimal. . . if it is compatible and no other

compatible set is larger.

Greedy Algorithms

I Main idea in greedy algorithms is to make one choice at a time
in a “greedy” fashion.
(Choose the thing that looks best, never look back. . .)

I We will sort shows in some “natural order" and choose shows
one by one if they’re compatible with the shows already chosen.
Concretely:

R← set of all shows sorted by some property
A← {} . selected shows
while R is not empty do

Take first show i from R
Add i to A
Delete i and all overlapping shows from R

end while

Clicker Question 1

R← set of all shows sorted by some property
A← {} . selected shows
while R is not empty do

Take first show i from R
Add i to A
Delete i and all overlapping shows from R

end while

Because the given algorithm includes sorting, we can deduce it is
I A: O(n log n)
I B: Ω(n log n)
I C: Θ(n log n)
I D: None of the above

What’s a “natural order" ?

I Start Time: Consider shows in ascending order of sj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

I Shortest Time: Consider shows in ascending order of fj − sj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

What’s a “natural order" ?

I Fewest Conflicts: Let cj be number of shows which overlap
with show j. Consider shows in ascending order of cj .

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i) − s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

I Finish Time: Consider shows in ascending order of fj .

We’ll show that this works!

Analysis

Sorting shows by finish time gives an optimal solution in examples.
Let’s try to prove that it will always be optimal.

Let A be the set of shows returned by the algorithm when shows are
sorted by finish time. What do we need to prove?
I A is compatible (obvious property of algorithm)
I A is optimal

We will prove A is optimal by a “greedy stays ahead” argument

Ordering by Finish Time is Optimal: “Greedy Stays Ahead”

I Let A = i1, . . . , ik be the intervals selected by the greedy algorithm
I Let O = j1, . . . , jm be the intervals of some optimal solution O

I Assume both are sorted by finish time
A: |--i1--||---i2---| ... |---ik---|
O: |---j1---||---j2---| ... |----jm----|

I Could it be the case that m > k?
I Observation: f(i1) ≤ f(j1). The first show in A finishes no later

than the first show in O.
I Claim (“greedy stays ahead”): f(ir) ≤ f(jr) for all r = 1, 2,

The rth show in A finishes no later than the rth show in O.

“Greedy Stays Ahead”

I Claim: f(ir) ≤ f(jr) for all r = 1, 2, . . .

I Proof by induction on r

I Base case (r = 1): ir is the first choice of the greedy
algorithm, which has the earliest overall finish time, so
f(ir) ≤ f(jr)

Induction Step

I Assume inductively that f(ir−1) ≤ f(jr−1)
I Assume for sake of contradiction that f(ir) > f(jr)

A: |--i1--| ... |---i(r-1)---||-------ir------|
O: |---j1---| ... |---j(r-1)---||----jr-----|

I But it must be the case that jr is compatible with the first r − 1
shows in A, because (using induction hypothesis)

s(jr) ≥ f(jr−1) ≥ f(ir−1)

I Therefore, the greedy algorithm could have selected jr instead of ir.
But jr finishes sooner than ir, which contradicts the algorithm.

I Therefore, it must be the case that f(ir) ≤ f(jr)

Running Time?
R← set of all shows sorted by finishing time
A← {} . selected shows
while R is not empty do

Take first show i from R
Add i to A
Delete i and all overlapping shows from R

end while

Can we make loop better than n2? Check conflict when selecting i

R← set of all shows sorted by finishing time
A← {}, end = 0 . last scheduled time
for show i from 1 to n do

if si ≥ end then
Add i to A; end = fi . O(1) iteration

end if
end for

Θ(n log n) — dominated by sort
Change in abstract version of algorithm makes it more efficient!

Algorithm Design—Greedy

Greedy: make a single “greedy” choice at a time, don’t look back.

Greedy
Formulate problem ?
Design algorithm easy
Prove correctness hard
Analyze running time easy

Focus is on proof techniques. Next time: another proof technique.

Problem 2: Interval Partitioning

I Suppose you are in charge of UMass classrooms.
I There are n classes to be scheduled on a Monday where class j

starts at time sj and finishes at time fj

I Your goal is to schedule all the classes such that the minimum
number of classrooms get used throughout the day. Obviously
two classes that overlap can’t use the same room.

Possible Greedy Approaches

I Suppose the available classrooms are numbered 1, 2, 3, . . .

I We could run a greedy algorithm. . . consider the lectures in
some natural order, and assign the lecture to the classroom
with the smallest numbered that is available.

I What’s a “natural order"?
I Start Time: Consider classes in ascending order of sj .
I Finish Time: Consider classes in ascending order of fj .
I Shortest Time: Consider classes in ascending order of fj − sj .
I Fewest Conflicts: Let cj be number of classes which overlap

with show j. Consider shows in ascending order of cj .

How Many Classrooms Are Needed?

I Consider all points on the timeline
I Count how many classes run at that time
I Maximum number is called the depth of the set of intervals
I It’s a lower bound on number of rooms needed (why?)
I Is this number sufficient ?

Interval Partitioning Algorithm

Sort the intervals by starting time
for j = 1 to n do

for each i < j overlapping interval j do
exclude label of Ii for scheduling Ij

end for
if there is some nonexcluded label in 1 .. d then

label Ij with that label
end if

end for

Clicker Question 2

If the class with the next starting time is compatible with several
rooms, it shoud be scheduled
I A) In the room with the earliest finishing time
I B) In the room with the latest finishing time
I C) In a room where nothing was scheduled so far
I D) Does not matter

Correctness of Interval Partitioning

Claim: Every resource will be assigned a label.

Proof? By contradiction, otherwise would have higher depth.

Claim: No two resources are assigned the same label.

Proof? Assume two intervals overlap, I1 starting before I2
Label of I1 is excluded when scheduling I2

Complexity of Interval Partitioning
Sort the intervals by starting time
for j = 1 to n do

for each i < j overlapping interval j do
exclude label of Ii for scheduling Ij

end for
if some label in 1 .. d is not excluded then

label Ij with that label
end if

end for

Naive: O(n log n + n2)

Better: O(n log n + nd) (keep finishing time for each label)

Improved:
I keep a priority queue of last finishing times for each label
I find min in O(1), update in O(log d)
I outer loop becomes O(n log d)

Clicker Question 3

An O(n log n + n log d) implementation for interval partitioning is
also
I A) O(n log n)
I B) O(n log(nd))
I C) Both A and B
I D) None of A or B

