	Greedy Algorithms
COMPSCI 311: Introduction to Algorithms Lecture 5: Greedy Algorithms Marius Minea University of Massachusetts Amherst	 We are moving on to our study of algorithm design techniques: Greedy Divide-and-conquer Dynamic programming Network flow Get a sense of "greedy" algorithms, then characterize them
Interval Scheduling	Formalizing Interval Scheduling
 In the 80s, your only opportunity to watch a specific TV show was the time it was broadcast. Unfortunately, on a given night there might be multiple shows that you want to watch and some of the broadcast times overlap. Example: [1, 4], [2, 3], [2, 7], [4, 7], [3, 6], [6, 10], [5, 7] You want to watch the highest number of shows. Which subset of shows do you pick? Fine print: assume you like all shows equally, you only have one TV, and you need to watch shows in their entirety. 	 Let's formalize the problem Shows 1, 2,, n (more generally: "requests" to be fulfilled with a given resource) s_j: start time of show j f_j, also written f(j): finish time of show j Shows i and j are compatible if they don't overlap. Set A of shows is compatible all pairs in A are compatible. Set A of shows is optimal if it is compatible and no other compatible set is larger.
Greedy Algorithms	Clicker Question 1
 Main idea in greedy algorithms is to make one choice at a time in a "greedy" fashion. (Choose the thing that looks best, never look back) We will sort shows in some "natural order" and choose shows one by one if they're compatible with the shows already chosen. Concretely: R ← set of all shows sorted by some property A ← {} ▷ selected shows while R is not empty do Take first show i from R Add i to A Delete i and all overlapping shows from R 	$R \leftarrow \text{set of all shows sorted by some property} \\ A \leftarrow \{\} \qquad \qquad \triangleright \text{ selected shows} \\ \text{while } R \text{ is not empty do} \\ \text{Take first show } i \text{ from } R \\ \text{Add } i \text{ to } A \\ \text{Delete } i \text{ and all overlapping shows from } R \\ \text{end while} \\ \text{Because the given algorithm includes sorting, we can deduce it is} \\ \text{A: } O(n \log n) \\ \text{B: } \Omega(n \log n) \\ \text{C: } \Theta(n \log n) \\ \text{D: None of the above} \\ \end{cases}$

icker Question 2	Correctness of Interval Partitioning
 If the class with the next starting time is compatible with several rooms, it shoud be scheduled A) In the room with the earliest finishing time B) In the room with the latest finishing time C) In a room where nothing was scheduled so far D) Does not matter 	Claim : Every resource will be assigned a label. Proof? By contradiction, otherwise would have higher depth. Claim : No two resources are assigned the same label. Proof? Assume two intervals overlap, I_1 starting before I_2 Label of I_1 is excluded when scheduling I_2
Complexity of Interval PartitioningSort the intervals by starting timefor $j = 1$ to n dofor each $i < j$ overlapping interval j doexclude label of I_i for scheduling I_j end forif some label in 1 d is not excluded thenlabel I_j with that labelend ifend forNaive: $O(n \log n + n^2)$ Better: $O(n \log n + nd)$ (keep finishing time for each label)Improved:• keep a priority queue of last finishing times for each labelfind min in $O(1)$, update in $O(\log d)$ • outer loop becomes $O(n \log d)$	Clicker Question 3 An O(n log n + n log d) implementation for interval partitioning is also A) O(n log n) B) O(n log(nd)) C) Both A and B D) None of A or B