COMPSCI 311 Introduction to Algorithms
Lecture 4: Graphs
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Clicker Question 1

Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then

```
            Mark \(v\) as "explored"
            for each edge \((v, w)\) incident to \(v\) do
            Put \(w\) in \(A \quad \triangleright w\) is discovered
            end for
        end if
```

end while

What is the maximum number of times a node w can be put in A ?

- A: once
- B: degree (w) times
- C: $2 \cdot \operatorname{degree}(w)$ times
- $\mathrm{D}:|V|$ times

Last time: Generic Graph Traversal

Let $A=$ data structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
$\mathrm{BFS}: A$ is a queue (FIFO) DFS: A is a stack (LIFO)

BFS Implementation

Let $A=$ empty Queue structure of discovered nodes

```
Traverse(s)
    Put s in A
    while }A\mathrm{ is not empty do
        Take a node v from }
        if }v\mathrm{ is not marked "explored" then
            Mark v as "explored"
            for each edge (v,w) incident to }v\mathrm{ do
                Put w in A }\trianglerightw\mathrm{ is discovered
            end for
        end if
    end while
    Is this actually BFS? Yes.
```


DFS Implementation

Let $A=$ empty Stack structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Is this actually DFS? Yes (reverse order for node neighbors)
Running time? $O(m+n)$

Clicker Question 2

```
DFS(u)
    Mark u as "explored"
    for each edge (u,v) do
        if v}\mathrm{ is not "explored" then
            Call DFS(v) recursively
        end if
    end for
```

 Put \(s\) in \(A\)
 while \(A\) is not empty do
 Take a node \(v\) from \(A\)
 if \(v\) is not "explored" then
 Mark \(v\) as "explored"
 for each edge \((v, w)\) do
 Put \(w\) in \(A\)
 end for
 end if
 end while

Suppose we have a tree with n nodes, height h and degree d.
Compare the memory used by recursive and non-recursive DFS (clarification: for the stack)

- A: recursive: $\Theta(h d)$, non-recursive: $\Theta(h)$
- B: recursive: $\Theta(h)$, non-recursive: $\Theta(h d)$
- C: recursive: $\Theta(n)$, non-recursive: $\Theta(h d)$
- D: recursive: $\Theta(h)$, non-recursive: $\Theta(d)$

Bipartite Testing

Question Given $G=(V, E)$, is G bipartite?

Algorithm? Idea: run BFS from any node s

- $L_{0}=$ red
- $L_{1}=$ blue
- $L_{2}=$ red
- ...
- Even layers red, odd layers blue

What could go wrong? Edge between two nodes at same layer.

Back to Connected Components

```
while There is some unexplored node s do
        BFS(s)
        Extract connected component containing s
end while
```

Running time?

Naive: $O(m+n)$ for each component
$\Rightarrow O(c(m+n))$ if c components.

Better: BFS on component C only works on nodes/edges in C

- Time for component C : O (\#edges in $C+\#$ nodes in C)
- Total time: $O(m+n)$

Bipartite Graphs

Definition Graph $G=(V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y.

Can color nodes red/blue s.t. no edges between nodes of same color

Examples

- Bipartite: student-college graph in stable matching
- Bipartite: client-server connections
- Not bipartite: "odd cycle" (cycle with odd \# of nodes)
- Not bipartite: any graph containing odd cycle

Claim (easy): If G contains an odd cycle, it is not bipartite.

Algorithm

Run BFS from any node s
if there is an edge between two nodes in same layer then Output "not bipartite"
else
$X=$ even layers
$Y=$ odd layers
end if

Correctness? Recall: all edges between same or adjacent layers.

1. If there are no edges between nodes in the same layer, then G is bipartite.
2. If there is an edge between two nodes in the same layer, G has an odd cycle and is not bipartite. Proof?

Directed Graph Traversal

Reachability. Find all nodes reachable from some node s.
s-t shortest path.
What is the length of the shortest directed path from s to t ?
Algorithm? BFS naturally extends to directed graphs.
Add v to L_{i+1} if there is a directed edge from L_{i} and v is not already discovered.

Some problems require us to consider the graph $G^{r e v}$ with edges reversed.

Useful to keep adjacency lists for both outgoing and incoming edges.

Topological Sorting

Definition A topological ordering of a directed graph is an ordering of the nodes such that all edges go "forward" in the ordering

- Label nodes $v_{1}, v_{2}, \ldots, v_{n}$ such that
- For all edges $\left(v_{i}, v_{j}\right)$ we have $i<j$
- A way to order the classes so all prerequisites are satisfied

Q: Is a topological ordering possible for any graph?

Directed Graphs

$G=(V, E)$

- $(u, v) \in E$ is a directed edge
- u points to v

Examples

- Facebook: undirected
- Twitter: directed
- Web: directed
- Road network: directed (if one-way roads)

Directed Acyclic Graphs

Definition
A directed acyclic graph (DAG) is a directed graph with no cycles.

Models dependencies, e.g. course prerequisites:

Math: (strict) partial order (irreflexive, antisymmetric, transitive)

Clicker Question 3

The maximum number of edges in a DAG with n nodes is

- A) $2(n-1)$
- B) $2 n-1$
- C) $n(n-1) / 2$
- D) $n(n-1)$

Topological Sorting

Problem Given DAG G, compute a topological ordering for G.
topo-sort(G)
while there are nodes remaining do
Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G
end while

Running time? $O\left(n^{2}+m\right)$ easy. $O(m+n)$ more clever

Topological Sorting in $O(m+n)$
topo-sort (G)
while there are nodes remaining do
Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G
end while
Optimization: don't search every time for nodes w/o incoming edges

- Keep and update incoming edge count for each node (setup in $O(m+n)$, each update constant-time)
- Keep set of nodes of nodes with incoming edges; add node when its count becomes zero
- Running time: $O(m+n)$

Topological Ordering

Claim If G has a topological ordering, then G is a DAG.

Topological Sorting Analysis

- In a DAG, there is always a node v with no incoming edges. Try to prove. (contradiction, pigeonhole principle)
- Removing a node v from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem: G is a DAG if and only if G has a topological ordering.

Directed Graph Connectivity

Strongly connected graph. Directed path between any two nodes.

Strongly connected component (SCC).
Maximal subset of nodes with directed path between any two.

SCCs can be found in time $O(m+n)$. (Tarjan, 1972)

Graph of SCCs (one node for each) is a DAG.

