
COMPSCI 311 Introduction to Algorithms
Lecture 4: Graphs

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Last time: Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

Clicker Question 1

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

What is the maximum number of times a node w can be put in A?
I A: once
I B: degree(w) times
I C: 2 · degree(w) times
I D: |V | times

BFS Implementation

Let A = empty Queue structure of discovered nodes

Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually BFS? Yes.

BFS Running Time

How many times does each line execute?

Traverse(s)
Put s in A 1
while A is not empty do 2m

Take a node v from A 2m
if v is not marked “explored" then 2m

Mark v as “explored" n
for each edge (v, w) incident to v do 2m

Put w in A 2m
end for

end if
end while

Running time O(m + n)

DFS Implementation

Let A = empty Stack structure of discovered nodes

Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually DFS? Yes (reverse order for node neighbors)
Running time? O(m + n)

Clicker Question 2

DFS(u)
Mark u as "explored"
for each edge (u, v) do

if v is not "explored" then
Call DFS(v) recursively

end if
end for

Put s in A
while A is not empty do

Take a node v from A
if v is not "explored" then

Mark v as "explored"
for each edge (v, w) do

Put w in A
end for

end if
end while

Suppose we have a tree with n nodes, height h and degree d.

Compare the memory used by recursive and non-recursive DFS
(clarification: for the stack)
I A: recursive: Θ(hd), non-recursive: Θ(h)
I B: recursive: Θ(h), non-recursive: Θ(hd)
I C: recursive: Θ(n), non-recursive: Θ(hd)
I D: recursive: Θ(h), non-recursive: Θ(d)

Back to Connected Components

while There is some unexplored node s do
BFS(s)
Extract connected component containing s

end while

Running time?

Naive: O(m + n) for each component
⇒ O(c(m + n)) if c components.

Better: BFS on component C only works on nodes/edges in C

I Time for component C: O(#edges in C + #nodes in C)
I Total time: O(m + n)

Review and Outlook

I Graph traversal by BFS/DFS
I Different versions of general exploration strategy
I O(m + n) time
I Produce trees with useful properties (for other problems)
I Basic algorithmic primitive — used in many other algorithms

path from s to t, connected components

I Bipartite testing

I Directed graphs
I Traversal
I Strong connectivity
I Topological sorting

Bipartite Graphs

Definition Graph G = (V, E) is bipartite if V can be partitioned
into sets X, Y such that every edge has one end in X and one in Y .

Can color nodes red/blue s.t. no edges between nodes of same color.

Examples
I Bipartite: student-college graph in stable matching
I Bipartite: client-server connections
I Not bipartite: “odd cycle” (cycle with odd # of nodes)
I Not bipartite: any graph containing odd cycle

Claim (easy): If G contains an odd cycle, it is not bipartite.

Bipartite Testing

Question Given G = (V, E), is G bipartite?

Algorithm? Idea: run BFS from any node s

I L0 = red
I L1 = blue
I L2 = red
I . . .
I Even layers red, odd layers blue

What could go wrong? Edge between two nodes at same layer.

Algorithm

Run BFS from any node s
if there is an edge between two nodes in same layer then

Output "not bipartite"
else

X = even layers
Y = odd layers

end if

Correctness? Recall: all edges between same or adjacent layers.

1. If there are no edges between nodes in the same layer, then G
is bipartite.

2. If there is an edge between two nodes in the same layer, G has
an odd cycle and is not bipartite. Proof?

Proof

I Let T be BFS tree of G and suppose (x, y) is an edge between
two nodes in the layer j

I Let z ∈ Li be the least common ancestor of x and y
(Useful in proofs: take least/greatest item with some property)
I Pzx = path from z to x in T
I Pyz = path from z to y in T
I Path that follows Pzx then edge (x, y) then Pyz is a cycle of

length 2(j − i) + 1, which is odd

I Therefore G is not bipartite.

Directed Graphs

G = (V, E)
I (u, v) ∈ E is a directed edge
I u points to v

Examples
I Facebook: undirected
I Twitter: directed
I Web: directed
I Road network: directed (if one-way roads)

Directed Graph Traversal

Reachability. Find all nodes reachable from some node s.

s-t shortest path.
What is the length of the shortest directed path from s to t?

Algorithm? BFS naturally extends to directed graphs.
Add v to Li+1 if there is a directed edge from Li and v is not
already discovered.

Some problems require us to consider the graph Grev with edges
reversed.

Useful to keep adjacency lists for both outgoing and incoming edges.

Directed Acyclic Graphs
Definition
A directed acyclic graph (DAG) is a directed graph with no cycles.

Models dependencies, e.g. course prerequisites:

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Math: (strict) partial order (irreflexive, antisymmetric, transitive)

Topological Sorting

Definition A topological ordering of a directed graph is an ordering
of the nodes such that all edges go “forward” in the ordering
I Label nodes v1, v2, . . . , vn such that
I For all edges (vi, vj) we have i < j
I A way to order the classes so all prerequisites are satisfied

Q: Is a topological ordering possible for any graph?

Clicker Question 3

The maximum number of edges in a DAG with n nodes is
I A) 2(n− 1)

I B) 2n− 1

I C) n(n− 1)/2

I D) n(n− 1)

Topological Sorting

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Exercise

1. Find a topological ordering.
2. Devise an algorithm to find a topological ordering.

Topological Ordering

M132 C187 C220 C240 C250 C311 C383

Claim If G has a topological ordering, then G is a DAG.

Topological Sorting

Problem Given DAG G, compute a topological ordering for G.

topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

end while

Running time? O(n2 + m) easy. O(m + n) more clever

Topological Sorting Analysis

I In a DAG, there is always a node v with no incoming edges.
Try to prove. (contradiction, pigeonhole principle)

I Removing a node v from a DAG, produces a new DAG.

I Any node with no incoming edges can be first in topological
ordering.

Theorem: G is a DAG if and only if G has a topological ordering.

Topological Sorting in O(m + n)

topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

end while

Optimization: don’t search every time for nodes w/o incoming edges
I Keep and update incoming edge count for each node

(setup in O(m + n), each update constant-time)
I Keep set of nodes of nodes with incoming edges; add node

when its count becomes zero
I Running time: O(m + n)

Directed Graph Connectivity
13.3. THE WEB AS A DIRECTED GRAPH 387

I'm a student
at Univ. of X

Company Z's
home page

Our
Founders

Press
Releases

Contact Us

Univ. of X

Classes

Networks

Networks
class blog

Blog post about
college rankings

I teach at
Univ. of X

USNews:
College

Rankings

USNews:
Featured
Colleges

Blog post
about

Company Z

I'm a applying to
college

My song
lyrics

Figure 13.6: A directed graph with its strongly connected components identified.

Strongly connected graph.
Directed path between any
two nodes.

Strongly connected
component (SCC).
Maximal subset of nodes
with directed path between
any two.

SCCs can be found in time
O(m + n). (Tarjan, 1972)

Graph of SCCs (one node
for each) is a DAG.

