

Review: Asymptotics

Property	Definition / terminology
$f(n)$ is $O(g(n))$	$\exists c, n_{0}$ s.t. $f(n) \leq c g(n)$ for all $n \geq n_{0}$ g is an asymptotic upper bound on f
$f(n)$ is $\Omega(g(n))$	$\exists c, n_{0}$ s.t. $f(n) \geq c g(n)$ for all $n \geq n_{0}$ Equivalently: $g(n)$ is $O(f(n))$ g is an asymptotic lower bound on f $f(n)$ is $\Theta(g(n))$ $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$ g is asymptotically tight bound on f

Some graphs

- Transportation networks: hubs, links, routes
- Communication networks: routing, how many hops, latency/throughput?
- Information networks: WWW, what are important/authoritative pages?
- Social networks: study interaction dynamics, find influencers?

How do we build algorithms to answer these questions?

Framingham heart study

"The Spread of Obesity in a Large Social Network over 32 Years" by Christakis and Fowler in New England Journal of Medicine, $2007{ }^{6}$

Political blogosphere graph

Node $=$ political blog; edge $=$ link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
slide credit: Kevin Wayne / Pearson

Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) V
- Set of pairs of nodes (edges) E (a relation)

Graph $G=(V, E)$

Clicker Question 1

Q: Which is not a path?

1. UCSB - SRI - UTAH
2. LINC - MIT - LINC - CASE
3. UCSB - SRI - STAN - UCLA - UCSB
4. None of the above

More applications

- Network science
- random graphs: various evolution models
- scale-free, small world
- Analyzing graph evolution in time
- fake news
- botnets
- Analyzing programs
- control flow graph, function call graph
- state space search (also in games): compute reachable states (configurations) is an error state reachable?

Edge $e=\{u, v\}$ (for an undirected graph)
but usually written $e=(u, v)$
u and v are neighbors, endpoints of e
A path is a sequence $P=v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ such that each consecutive pair v_{i}, v_{i+1} is joined by an edge in G

Called: path "from v_{1} to v_{k} ". Or: a $v_{1}-v_{k}$ path

Definitions: edge, path

- Simple path: path where all vertices are distinct
- Exercise. Prove: If there is a path from u to v then there is a simple path from u to v.
- Distance from u to v : minimum number of edges in a $u-v$ path
- Cycle: path $v_{1}, \ldots, v_{k-1}, v_{k}$ where $v_{1}=v_{k}(k>1)$
- Simple cycle: no repeated nodes (except first $=$ last)

\square

Graph Traversal

Thought experiment. World social graph.

- Is it connected?
- If not, how big is largest connected component?
- Is there a path between you and <some famous person>?
"Six degrees of separation" (everyone connected in at most 6 links?) Erdös number: coauthorship of scientific papers
How can you tell algorithmically?
Answer: graph traversal! (BFS/DFS)

Trees

Tree $=$ a connected graph with no cycles

- Q: Is this equivalent to trees you saw in Data Structures?
- A: More or less.
- Rooted tree: tree with parent-child relationship
- Pick root r and "orient" all edges away from root
- Parent of $v=$ predecessor on path from r to v

Directed Graphs

- Directed graph $G=(V, E)$
- Directed edge $e=(u, v)$ is now an ordered pair
- e leaves u (source) and enters v (sink)
- Directed path, cycle: same as before, but with directed edges
- Strongly connected: directed graph with directed path between every pair of vertices
- Note: graphs undirected if not otherwise specified

Breadth-First Search

Explore outward from starting node by distance. "Expanding wave"

Breadth-First Search: Layers

Explore outward from starting node s
Define layer $L_{i}=$ all nodes at distance exactly i from s

Layers

- $L_{0}=\{s\}$
- $L_{1}=$ nodes with edge to L_{0}
- $L_{2}=$ nodes with an edge to L_{1} that don't belong to L_{0} or L_{1}
- \ldots
- $L_{i+1}=$ nodes with an edge to L_{i} that don't belong to any earlier layer.

Observation:
There is a path from s to t if and only if t appears in some layer.

BFS Tree

Exercise: draw the BFS layers for a BFS starting from MIT

We can use BFS to make a tree

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph $G=(V, E)$, and let (x, y) be any edge of G.
Then the layers of x and y in T differ by at most 1 .

Proof

- Let (x, y) be an edge
- Suppose $x \in L_{i}, y \in L_{j}$, and $j>i+1$
- When BFS visits x, either y is already discovered or not.
- If y is already discovered, then $j \leq i+1$. Contradiction.
- Otherwise since $(x, y) \in E, y$ is added to L_{i+1}. Contradiction.

Clicker Question 2

How many nodes are in layer 2, starting a BFS from MIT ?

A) 3
B) 4
C) 5
D) None of the above

BFS Tree

Claim: let T be the tree discovered by BFS on graph $G=(V, E)$, and let (x, y) be any edge of G.
Then the layers of x and y in T differ by at most 1 .
Proof?

A More General Exploration Strategy

To explore the connected component containing s :

Add any node v for which

- (u, v) is an edge
- u is explored, but v is not

DFS Tree

Can also extract tree T from DFS.

- $(u, v) \in T$ if v explored from u-i.e., $\operatorname{DFS}(u)$ calls $\operatorname{DFS}(v)$

Claim: let T be a depth-first search tree for graph $G=(V, E)$, and let (x, y) be an edge that is in G but not T (a "non-tree edge"). Then either x is an ancestor of y or y is an ancestor of x in T.

Proof?

Recursive DFS

DFS(u)
Mark u as "explored"
for each edge (u, v) incident to u do
if v is not marked "explored" then
Recursively invoke DFS (v)
end if
end for

Exercise: do an example

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph $G=(V, E)$, and let (x, y) be an edge that is in G but not T (a "non-tree edge"). Then either x is an ancestor of y or y is an ancestor of x in T.

Proof

- Suppose not and suppose that x is reached first by DFS.
- Before leaving x, we must examine (x, y).
- Since $(x, y) \notin T, y$ must have been explored by this time.
- But y was not explored when we arrived at x by assumption.
- Thus y was explored during the execution of $\operatorname{DFS}(x)$.
- Implies x is ancestor of y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?
while there is some unexplored node s do
$\operatorname{BFS}(s) \quad \triangleright$ Run BFS starting from s.
Extract connected component containing s end while

Usually OK to assume graph is connected.
State if you are doing so and why it does not trivialize the problem.
Running time? What's the running time of BFS?

Implementation

- How do we implement graph traversal? What is the running time?
- Preliminaries
- Let $m=|E|$ be the number of edges
- Let $n=|V|$ be the number of nodes
- Data structure to represent graph? ...

Graph representation: adjacency matrix
n-by- n matrix with $A_{u v}=1$ if (u, v) is an edge
Space proportional to n^{2}

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph representation: adjacency matrix

Adjacency matrix. n-by- n matrix with $A_{u v}=1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta\left(n^{2}\right)$ time.

Clicker Question 3

An adjacency matrix representation for graph (V, E) with $|V|=n$ takes time
A) $\Theta(n)$ to check if (u, v) is an edge, $\Theta(|E|)$ to traverse all edges
B) $\Theta(n)$ to check if (u, v) is an edge, $\Theta\left(n^{2}\right)$ to traverse all edges
C) $\Theta(1)$ to check if (u, v) is an edge, $\Theta\left(n^{2}\right)$ to traverse all edges
D) $\Theta(1)$ to check if (u, v) is an edge, $\Theta(|E|)$ to traverse all edges

Graph representation: adjacency lists

Adjacency lists. Each node keeps list of neighbors

Each edge stored twice

- Space? $\Theta(m+n)$
- Checking if (u, v) is an edge?
O (degree $(u))$ time (degree $=$ number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and discovered nodes

- Explored $=$ have seen this node and explored its outgoing edges
- Discovered = the "frontier". Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let $A=$ data structure of discovered nodes

Traverse(s)

Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then

Mark v as "explored"

for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Note: one part of this algorithm seems wasteful. Why?
Can put multiple copies of a single node in A.
BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

