COMPSCI 311 Introduction to Algorithms
Lecture 3: Graphs

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Review: Asymptotics

Property Definition / terminology

f(n)is O(g(n))

Je,np s.t. f(n) < ceg(n) for all n > ng
g is an asymptotic upper bound on f

Je,ng s.t. f(n) > eg(n) for all n > ng
Equivalently: g(n) is O(f(n))
g is an asymptotic lower bound on f

f(n)is O(g(n)) and f(n) is Q(g(n))

g is an asymptotically tight bound on f

f(n) is Q(g(n))

f(n)is ©(g(n))

Graphs are everywhere

Massachusetts Bay Transportation Authority i
Commuter Rail Map

N

[r—

LA LG

p—cve
AT
f'{f s s o

rows 1285 [—

- canpaos|

e — .

Fonae pams A ycromd mooLeBomouciad
Legend o TRRALY
—comREe @B o [N D ——

Some graphs

» Transportation networks: hubs, links, routes

» Communication networks: routing, how many hops,
latency/throughput?

» Information networks:
WWW, what are important/authoritative pages?

» Social networks: study interaction dynamics, find influencers?

How do we build algorithms to answer these questions?

One week of Enron emails

'EMPLOYEE (EMAL ADDRESS).

AT LEAST ONE EMAIL CONTAC
‘BETWEEN EMPLOYEES

subordinates.

Finding Patterns
In Corporate Chatter

slide credit: Kevin Wayne

Pearson

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, 230) and green denotes a nonobese person. The colors of the
tes between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

slide credit: Kevin Wayne / Pearson

Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

slide credit: Kevin Wayne / Pearson

37

More applications

» Network science

» random graphs: various evolution models
> scale-free, small world

» Analyzing graph evolution in time

> fake news
> botnets

» Analyzing programs

> control flow graph, function call graph

> state space search (also in games):
compute reachable states (configurations)
is an error state reachable?

Graphs

A graph is a mathematical representation of a network

» Set of nodes (vertices) V'
> Set of pairs of nodes (edges) E (a relation)

Graph G = (V, E)

Definitions: edge, path

Edge e = {u, v} (for an undirected graph)
but usually written e = (u,v)

u and v are neighbors, endpoints of e
A path is a sequence P = vy, v, ...,V5_1, v such that each

consecutive pair v;, v;41 is joined by an edge in G

Called: path “from vy to v". Or: a v1—v, path

Clicker Question 1

Q: Which is not a path?
1. UCSB - SRI - UTAH

2. LINC - MIT - LINC - CASE
3. UCSB - SRI - STAN - UCLA - UCSB
4

. None of the above

Simple path, distance, cycle

» Simple path: path where all vertices are distinct
> Exercise. Prove: If there is a path from u to v then there is a
simple path from u to v.

» Distance from u to v:
minimum number of edges in a u—v path

» Cycle: path vy,...,v5_1, v Where v = vg (k > 1)

> Simple cycle: no repeated nodes (except first = last)

Connected components

Connected graph = graph with paths between every pair of vertices.

» Connected component: subset of nodes U such that
> A: Paths exist between every pair of nodes in U
»> B: A'is not true if any nodes added to U (U is maximal)

Trees

Tree = a connected graph with no cycles

» Q: Is this equivalent to trees you saw in Data Structures?
» A: More or less.

» Rooted tree: tree with parent-child relationship

> Pick root r and “orient” all edges away from root
» Parent of v = predecessor on path from r to v

Trees

Let G be an undirected graph with n nodes.
Then any two of the following statements implies the third

» G is connected
» G does not contain a cycle

» G hasn — 1 edges

Directed Graphs

» Directed graph G = (V, E)
» Directed edge ¢ = (u,v) is now an ordered pair
> ¢ leaves u (source) and enters v (sink)

» Directed path, cycle: same as before, but with directed edges

» Strongly connected: directed graph with directed path
between every pair of vertices

» Note: graphs undirected if not otherwise specified

Graph Traversal

Thought experiment. World social graph.

» Is it connected?
» If not, how big is largest connected component?
» |s there a path between you and <some famous person>?

“Six degrees of separation” (everyone connected in at most 6 links?)
Erddés number: coauthorship of scientific papers

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search

Explore outward from starting node by distance. “Expanding wave”

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer

Breadth-First Search: Layers

Explore outward from starting node s.
Define layer L; = all nodes at distance exactly i from s.

Layers

> LO = {S}

» [= nodes with edge to Ly

» [5 = nodes with an edge to L; that don't belong to Lg or Ly

> ...

» [;.1 = nodes with an edge to L; that don't belong to any
earlier layer.

Observation:
There is a path from s to ¢ if and only if ¢ appears in some layer.

Clicker Question 2

How many nodes are in layer 2, starting a BFS from MIT ?

D) None of the above

BFS Tree

Exercise: draw the BFS layers for a BFS starting from MIT

distance 1

distance 2

distance 3

We can use BFS to make a tree.

BFS Tree

distance 1

distance 2

distance 3

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G.
Then the layers of = and y in T differ by at most 1.

Proof?

BFS and non-tree edges

Claim: let T' be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G.
Then the layers of = and y in T differ by at most 1.

Proof

» Let (z,y) be an edge
» Suppose x € L;, y € Lj, and j > i+ 1
» When BFS visits z, either y is already discovered or not.
> If y is already discovered, then j < i+ 1. Contradiction.
» Otherwise since (z,y) € E, y is added to L;1;. Contradiction.

A More General Exploration Strategy

To explore the connected component containing s:

Add any node v for which

» (u,v) is an edge
» w is explored, but v is not

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently
added node until you have to backtrack.
Example.

Recursive DFS

DFS(u)
Mark u as "explored"
for each edge (u,v) incident to u do
if v is not marked "explored" then
Recursively invoke DFS(v)
end if
end for

Exercise: do an example

DFS Tree

Can also extract tree T' from DFS.

> (u,v) € T if v explored from u—i.e., DFS(u) calls DFS(v)

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (z,y) be an edge that is in G but not T' (a “non-tree edge”).
Then either = is an ancestor of y or y is an ancestor of x in T'.

Proof?

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x,y) be an edge that is in G but not T' (a “non-tree edge").
Then either x is an ancestor of y or y is an ancestor of z in T'.

Proof

» Suppose not and suppose that z is reached first by DFS.

> Before leaving x, we must examine (z,y).

» Since (z,y) ¢ T, y must have been explored by this time.

» But y was not explored when we arrived at x by assumption.
» Thus y was explored during the execution of DFS(x).

» Implies x is ancestor of y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do

BFS(s) > Run BFS starting from s.

Extract connected component containing s
end while

Usually OK to assume graph is connected.

State if you are doing so and why it does not trivialize the problem.

Running time? What's the running time of BFS?

Implementation

» How do we implement graph traversal?
What is the running time?

» Preliminaries

» Let m = |E| be the number of edges
» Let n = |V| be the number of nodes
> Data structure to represent graph? ...

Graph representation: adjacency matrix

n-by-n matrix with A,, = 1 if (u,v) is an edge

Space proportional to n?

OO OCOOKrHKHOR
COoOOoORKHRORN
HFHRORFROOKKRW
OO O OOHOM
OO R OKRRKFKEOW
coorooooo
HroOoooRroolN
OrRroCOO0OOR OO®

0N UAWN R

Clicker Question 3

An adjacency matrix representation for graph (V, E) with |V| =n
takes time

=

n) to check if (u

2

v) is an edge, ©(|E|) to traverse all edges

n) to check if (u,v) is an edge, ©(n?) to traverse all edges

1) to check if (u,v) is an edge, ©(n?) to traverse all edges
) ((

)
to check if (u,v) is an edge, ©(|E|) to traverse all edges

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A,, =1 if (u,v) is an edge.
» Two representations of each edge.
* Space proportional to n2.
* Checking if (u,v) is an edge takes (1) time.
+ ldentifying all edges takes ©(n2) time.

ONNG) 03200000
‘ 2|10 1000
0'9 4loi0061000
‘ 5001 0100
G0 © slosoorone
8|00 0010

slide credit: Kevin Wayne / Pearson

Graph representation: adjacency lists

Adjacency lists. Each node keeps list of neighbors

‘
ONNO 2 [~ —~{+ (5]

‘ S I e NI oy I e FA N e 1
OunO. ‘
" s [El=—El=—{E=—E]

O—O © H
7
© :
» Each edge stored twice
» Space? ©(m +n)
» Checking if (u,v) is an edge?
O(degree(u)) time (degree = number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and
discovered nodes

» Explored = have seen this node and explored its outgoing edges

» Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal
Let A = data structure of discovered nodes

Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

Note: one part of this algorithm seems wasteful. Why?
Can put multiple copies of a single node in A.

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

