
COMPSCI 311 Introduction to Algorithms
Lecture 3: Graphs

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

Review: Asymptotics

Property Definition / terminology
f(n) is O(g(n)) ∃c, n0 s.t. f(n) ≤ cg(n) for all n ≥ n0

g is an asymptotic upper bound on f

f(n) is Ω(g(n)) ∃c, n0 s.t. f(n) ≥ cg(n) for all n ≥ n0
Equivalently: g(n) is O(f(n))
g is an asymptotic lower bound on f

f(n) is Θ(g(n)) f(n) is O(g(n)) and f(n) is Ω(g(n))
g is an asymptotically tight bound on f

Graphs are everywhere Some graphs

I Transportation networks: hubs, links, routes

I Communication networks: routing, how many hops,
latency/throughput?

I Information networks:
WWW, what are important/authoritative pages?

I Social networks: study interaction dynamics, find influencers?

How do we build algorithms to answer these questions?

4

One week of Enron emails

slide credit: Kevin Wayne / Pearson

6

Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the
previous time point (t); and most pertinent, the
alter’s obesity status at times t and t + 1.25 We
used generalized estimating equations to account
for multiple observations of the same ego across
examinations and across ego–alter pairs.26 We
assumed an independent working correlation
structure for the clusters.26,27

The use of a time-lagged dependent variable
(lagged to the previous examination) eliminated
serial correlation in the errors (evaluated with a
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and
any intrinsic, stable predisposition to obesity. The
use of a lagged independent variable for an alter’s
weight status controlled for homophily.25 The
key variable of interest was an alter’s obesity at
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight
affected an ego’s weight or that an ego and an
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego
and the alter affected the association between the
ego’s obesity and the alter’s obesity. For example,
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity,
then the directionality of friendship should not
have been relevant.

We evaluated the role of a possible spread in
smoking-cessation behavior as a contributor to
the spread of obesity by adding variables for the
smoking status of egos and alters at times t and
t + 1 to the foregoing models. We also analyzed
the role of geographic distance between egos
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

slide credit: Kevin Wayne / Pearson

Node = political blog; edge = link.

37

Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4

slide credit: Kevin Wayne / Pearson

More applications

I Network science
I random graphs: various evolution models
I scale-free, small world

I Analyzing graph evolution in time
I fake news
I botnets

I Analyzing programs
I control flow graph, function call graph
I state space search (also in games):

compute reachable states (configurations)
is an error state reachable?

Graphs

A graph is a mathematical representation of a network
I Set of nodes (vertices) V
I Set of pairs of nodes (edges) E (a relation)

Graph G = (V, E)

Definitions: edge, path

Edge e = {u, v} (for an undirected graph)
but usually written e = (u, v)

u and v are neighbors, endpoints of e

A path is a sequence P = v1, v2, . . . , vk−1, vk such that each
consecutive pair vi, vi+1 is joined by an edge in G

Called: path “from v1 to vk”. Or: a v1–vk path

Clicker Question 126 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Q: Which is not a path?

1. UCSB - SRI - UTAH

2. LINC - MIT - LINC - CASE

3. UCSB - SRI - STAN - UCLA - UCSB

4. None of the above

Simple path, distance, cycle

I Simple path: path where all vertices are distinct
I Exercise. Prove: If there is a path from u to v then there is a

simple path from u to v.

I Distance from u to v:
minimum number of edges in a u–v path

I Cycle: path v1, . . . , vk−1, vk where v1 = vk (k > 1)
I Simple cycle: no repeated nodes (except first = last)

Connected components

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Connected graph = graph with paths between every pair of vertices.
I Connected component: subset of nodes U such that

I A: Paths exist between every pair of nodes in U
I B: A is not true if any nodes added to U (U is maximal)

Trees

Tree = a connected graph with no cycles

I Q: Is this equivalent to trees you saw in Data Structures?

I A: More or less.

I Rooted tree: tree with parent-child relationship
I Pick root r and “orient” all edges away from root
I Parent of v = predecessor on path from r to v

Trees

Let G be an undirected graph with n nodes.
Then any two of the following statements implies the third
I G is connected

I G does not contain a cycle

I G has n− 1 edges

Directed Graphs

I Directed graph G = (V, E)
I Directed edge e = (u, v) is now an ordered pair
I e leaves u (source) and enters v (sink)

I Directed path, cycle: same as before, but with directed edges
I Strongly connected: directed graph with directed path

between every pair of vertices
I Note: graphs undirected if not otherwise specified

Graph Traversal

Thought experiment. World social graph.
I Is it connected?
I If not, how big is largest connected component?
I Is there a path between you and <some famous person>?

“Six degrees of separation” (everyone connected in at most 6 links?)
Erdös number: coauthorship of scientific papers

How can you tell algorithmically?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search
Explore outward from starting node by distance. “Expanding wave”2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most e�cient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Breadth-First Search: Layers

Explore outward from starting node s.

Define layer Li = all nodes at distance exactly i from s.

Layers
I L0 = {s}
I L1 = nodes with edge to L0
I L2 = nodes with an edge to L1 that don’t belong to L0 or L1
I . . .
I Li+1 = nodes with an edge to Li that don’t belong to any

earlier layer.

Observation:
There is a path from s to t if and only if t appears in some layer.

Clicker Question 2

How many nodes are in layer 2, starting a BFS from MIT ?26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

A) 3

B) 4

C) 5

D) None of the above

BFS Tree

Exercise: draw the BFS layers for a BFS starting from MIT34 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC RAND

UTAH

SRI

UCLASTANUCSB

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node mit.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:

(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),

and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found

at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next

distance out. Each new layer is built from all those nodes that (i) have not already

been discovered in earlier layers, and that (ii) have an edge to some node in the previous

layer.

This technique is called breadth-first search, since it searches the graph outward from a start-

ing node, reaching the closest nodes first. In addition to providing a method of determining

distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.

We can use BFS to make a tree.

BFS Tree
34 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC RAND

UTAH

SRI

UCLASTANUCSB

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node mit.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:

(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),

and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found

at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next

distance out. Each new layer is built from all those nodes that (i) have not already

been discovered in earlier layers, and that (ii) have an edge to some node in the previous

layer.

This technique is called breadth-first search, since it searches the graph outward from a start-

ing node, reaching the closest nodes first. In addition to providing a method of determining

distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x, y) be any edge of G.
Then the layers of x and y in T differ by at most 1.

Proof?

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x, y) be any edge of G.
Then the layers of x and y in T differ by at most 1.

Proof
I Let (x, y) be an edge
I Suppose x ∈ Li, y ∈ Lj , and j > i + 1
I When BFS visits x, either y is already discovered or not.

I If y is already discovered, then j ≤ i + 1. Contradiction.
I Otherwise since (x, y) ∈ E, y is added to Li+1. Contradiction.

A More General Exploration Strategy

To explore the connected component containing s:

s

u v

Add any node v for which
I (u, v) is an edge
I u is explored, but v is not

Depth-First Search

Depth-first search (DFS): keep exploring from the most recently
added node until you have to backtrack.
Example.26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Recursive DFS

DFS(u)
Mark u as "explored"
for each edge (u, v) incident to u do

if v is not marked "explored" then
Recursively invoke DFS(v)

end if
end for

Exercise: do an example

DFS Tree

Can also extract tree T from DFS.
I (u, v) ∈ T if v explored from u—i.e., DFS(u) calls DFS(v)

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .

Proof?

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .

Proof
I Suppose not and suppose that x is reached first by DFS.
I Before leaving x, we must examine (x, y).
I Since (x, y) /∈ T , y must have been explored by this time.
I But y was not explored when we arrived at x by assumption.
I Thus y was explored during the execution of DFS(x).
I Implies x is ancestor of y.

Exploring all Connected Components

How to explore entire graph even if it is disconnected?

while there is some unexplored node s do
BFS(s) . Run BFS starting from s.
Extract connected component containing s

end while

Usually OK to assume graph is connected.
State if you are doing so and why it does not trivialize the problem.

Running time? What’s the running time of BFS?

Implementation

I How do we implement graph traversal?
What is the running time?

I Preliminaries
I Let m = |E| be the number of edges
I Let n = |V | be the number of nodes
I Data structure to represent graph? . . .

Graph representation: adjacency matrix

n-by-n matrix with Auv = 1 if (u, v) is an edge

Space proportional to n2

8

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

・Two representations of each edge.

・Space proportional to n2.

・Checking if (u, v) is an edge takes Θ(1) time.

・Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Clicker Question 3

An adjacency matrix representation for graph (V, E) with |V | = n
takes time

A) Θ(n) to check if (u, v) is an edge, Θ(|E|) to traverse all edges

B) Θ(n) to check if (u, v) is an edge, Θ(n2) to traverse all edges

C) Θ(1) to check if (u, v) is an edge, Θ(n2) to traverse all edges

D) Θ(1) to check if (u, v) is an edge, Θ(|E|) to traverse all edges

8

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

・Two representations of each edge.

・Space proportional to n2.

・Checking if (u, v) is an edge takes Θ(1) time.

・Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

slide credit: Kevin Wayne / Pearson

Graph representation: adjacency lists

Adjacency lists. Each node keeps list of neighbors

9

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

・Two representations of each edge.

・Space is Θ(m + n).

・Checking if (u, v) is an edge takes O(degree(u)) time.

・Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

I Each edge stored twice
I Space? Θ(m + n)
I Checking if (u, v) is an edge?

O(degree(u)) time (degree = number of neighbors)

Traversal Implementations

Generic approach: maintain set of explored nodes and
discovered nodes
I Explored = have seen this node and explored its outgoing edges

I Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal
Let A = data structure of discovered nodes

Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Note: one part of this algorithm seems wasteful. Why?
Can put multiple copies of a single node in A.

BFS: A is a queue (FIFO) DFS: A is a stack (LIFO)

