	Stable matchings: Gale-Shapley
	What's representative?
COMPSCI 311: Introduction to Algorithms Lecture 26: Review	Helper properties unmatched college: has not offered to some student student options get better during a run
Marius Minea University of Massachusetts Amherst	Invariants (for loops) once student matched, stays matched
	Nondeterminism: different possible runs here: with same result: same stable matching best for college, worst for student among all stable matchings
	These issues appear in many other algorithms
Algorithmic Complexity	Graph Searches
$f(n)=O(g(n))$ (and Ω,Θ are <i>relations</i> between functions)	Need to distinguish directed from undirected graphs
Can also see $O(g(n))$ as a <i>class of functions</i> that grow	Undirected graphs
asymptotically not faster than g	DFS has <i>tree</i> edges and <i>back</i> edges (at least 2 levels up) BFS has <i>tree</i> edges and <i>non-tree</i> edges (as most ± 1 difference)
f(n) = O(g(n)) means there exist $c > 0$ and n_0 s.t. $f(n) \le cg(n) \ \forall n \ge n_0$	Directed graphs
Can choose c and n_0 as needed (arbitrarily large)	DFS hat tree, back, cross and forward edges
$f(n) = \Omega(g(n))$ (lower bound) equivalent to $g(n) = O(f(n))$	BFS non-tree edges: go at most 1 level down, same level, or any level up
$f(n)=\Theta(g(n))$ equivalent to $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$	<i>Cycle detection</i> : DFS, only <i>back</i> edges Detect for directed graphs: mark nodes unvisited/open/closed
Directed Acyclic Graphs	Amortized Analysis
DFS has no back edges (only tree, cross and forward edges)	Often, useful to count <i>total</i> work rather than work per iteration
Topological Ordering / Sorting in linear time: $O(V + E)$	naive analysis of BFS and DFS: $O(V)$, actual bound is $O(V + E)$ more complex: Union-Find, negative cycle detection
	Minor data structure changes can improve runtime bound e.g., updating indegree for topological sorting

Greedy	Divide and Conquer
Make local choice that seems best now earliest deadline for jobs shortest edge for Kruskal, Prim closest node for Dijkstra For problems with <i>optimal substructure</i> property <i>Correctness Arguments</i> Greedy stays ahead Exchange argument (compare to purported optimum) careful if several optimal solutions	Divide problem into several parts Solve each instance Combine solutions to solve original problem Recurrences Unroll (draw recursion tree) Guess solution $(f(n) \le c \cdot g(n))$, prove by strong induction Use Master Theorem
Recurrences: Master Theorem	Strengthening Assumptions
Let $T(n) = aT(n/b) + f(n)$, with $a \ge 1$, $b > 1$. Then: 1. $T(n) = \Theta(n^{\log_b a})$ when $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$ $f(n)$ grows polynomially slower than $n^{\log_b a}$ pause 2. $T(n) = \Theta(n^{\log_b a} \log n)$ when $f(n) = \Theta(n^{\log_b a})$ (border case) $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ when $f(n) = \Theta(n^{\log_b a} \log^k n)$ 3. $T(n) = \Theta(f(n))$ when $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and af(n/b) < cf(n) for some $c < 1$ when n sufficiently large $f(n)$ grows polynomially faster than $n^{\log_b a}$ Does not cover everything: gaps between 1 and 2, and 2 and 3 Guess and prove by induction for other cases	Solve <i>more</i> than was asked for sort-and-count for counting inversions Return more than was asked for tree problems: balanced trees, well-ordered nodes Avoid recomputations!
Dynamic Programming	Space-Time Tradeoff
 Overlapping subproblems: avoid recomputing common partial results Often: computing optimum: <i>optimal substructure</i> but evaluates multiple choices, unlike greedy Binary choice (choose or don't choose an item) <i>n</i>-ary choice (multiple options): rod cutting Adding one more dimension (subset sum, knapsack) Pseudopolynomial cases: proportional to one of input values actually <i>exponential</i> in number of bits for that input value 	Use more time to save some space Sometimes, same asymptotic time (more rarely) Hirschberg sequence alignment, $T(n) = 2T(n/2) + O(n^2) \Rightarrow O(n^2)$ More often: higher time complexity for smaller space coin game: $T(n) = T(n-1) + O(n^2) \Rightarrow O(n^3)$

Network Flows: Ford-Fulkerson	Polynomial-Time Reduction
Flow networks <i>directed</i> , source-sink, edge capacities Maximum flow = minimum cut. Residual graph for max flow disconnects s from t (cut). Max flow: forward edges saturated, backward edges have no flow. Complexity: $O(mnC_{max})$ (Ford-Fulkerson), $O(m^2n)$ (Edmonds-Karp), $O(mn^2)$ (Dinitz) Solve: node capacities, node-disjont paths, edge-disjoint paths, etc. Maximum bipartite matching: $O(mn)$ time	 Y ≤_P X solveY(yInput) Construct xInput // poly-time foo = solveX(xInput) // poly # of calls return yes/no based on foo // poly-time Statement abut relative hardness If Y ≤_P X and X ∈ P, then Y ∈ P If Y ≤_P X and Y ∉ P then X ∉ P To prove NP-Completeness, must reduce from NP-complete problem (reduce NP-complete problem to the one considered)
P and NP / Solver vs. Certifier	Finding Reductions
 P: Decision problems with a polynomial time algorithm. NP: Decision problems with a polynomial time certifier. Intuition: A correct solution can be certified in polynomial time. Let X be a decision problem and s be problem instance (e.g., s = ⟨G, k⟩ for INDEPENDENT SET) Poly-time solver. Algorithm A(s) such that A(s) = YES iff correct answer is YES, and running time polynomial time in s Poly-time certifier. Algorithm C(s, t) such that for every instance s, there is some t such that C(s, t) = YES iff correct answer is YES, and running time is polynomial in s . t is the "certificate" or hint. Must also be polynomial-size in s 	Problems are very close (map to one another) SETCOVER and HITTINGSET Problems may be are duals: VERTEXCOVER and INDEPENDENTSET Sometimes we construct gadgets 3-SAT to INDEPENDENTSET
Approximation Algorithms ▶ ρ-approximation algorithm ▶ Runs in polynomial time ▶ Solves arbitrary instance of the problem ▶ Guaranteed to find a solution within ratio ρ of optimum: value of our solution value of optimum solution ≤ ρ Sometimes non-obvious (spanning tree to get cycle in TSP), both greedy and non-greedy (choose both nodes for vertex cover). Examples: ▶ 1.5-approximation for Load Balancing ▶ 2-approximation for Vertex Cover	 Randomized Algorithms Efficient in expectation Optimal with high probability Break (undesired) symmetry Show some solution exists, or derive bound on number Types of randomized algorithms: Fail with some small probability (Monte Carlo) Always succeed, but running time is random (Las Vegas) Techniques used in proof: expected value, union bound, write sum in two ways