COMPSCI 311: Introduction to Algorithms Lecture 26: Review Marius Minea University of Massachusetts Amherst	Stable matchings: Gale-Shapley What's representative? Helper properties unmatched college: has not offered to some student student options get better during a run Invariants (for loops) once student matched, stays matched Nondeterminism: different possible runs here: with same result: same stable matching best for college, worst for student among all stable matchings These issues appear in many other algorithms
Algorithmic Complexity $f(n)=O(g(n))$ (and Ω, Θ are relations between functions) Can also see $O(g(n))$ as a class of functions that grow asymptotically not faster than g $f(n)=O(g(n))$ means there exist $c>0$ and n_{0} s.t. $f(n) \leq c g(n) \forall n \geq n_{0}$ Can choose c and n_{0} as needed (arbitrarily large) $f(n)=\Omega(g(n))$ (lower bound) equivalent to $g(n)=O(f(n))$ $f(n)=\Theta(g(n))$ equivalent to $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$	Graph Searches Need to distinguish directed from undirected graphs Undirected graphs DFS has tree edges and back edges (at least 2 levels up) BFS has tree edges and non-tree edges (as most ± 1 difference) Directed graphs DFS hat tree, back, cross and forward edges BFS non-tree edges: go at most 1 level down, same level, or any level up Cycle detection: DFS, only back edges Detect for directed graphs: mark nodes unvisited/open/closed
Directed Acyclic Graphs DFS has no back edges (only tree, cross and forward edges) Topological Ordering / Sorting in linear time: $O(V+E)$ Some algorithms more efficient e.g. find longest path (dynamic programming)	Amortized Analysis Often, useful to count total work rather than work per iteration naive analysis of BFS and DFS: $O(V)$, actual bound is $O(V+E)$ more complex: Union-Find, negative cycle detection Minor data structure changes can improve runtime bound e.g., updating indegree for topological sorting

Greedy

Make local choice that seems best now
earliest deadline for jobs
shortest edge for Kruskal, Prim
closest node for Dijkstra
For problems with optimal substructure property

Correctness Arguments

Greedy stays ahead
Exchange argument (compare to purported optimum) careful if several optimal solutions

Divide and Conquer

Divide problem into several parts
Solve each instance
Combine solutions to solve original problem

Recurrences

Unroll (draw recursion tree)
Guess solution $(f(n) \leq c \cdot g(n))$, prove by strong induction Use Master Theorem

Recurrences: Master Theorem

Let $T(n)=a T(n / b)+f(n)$, with $a \geq 1, b>1$. Then:

1. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ when $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$ $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ pause
2. $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ when $f(n)=\Theta\left(n^{\log _{b} a}\right)$ (border case) $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$ when $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$
3. $T(n)=\Theta(f(n))$ when $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a f(n / b)<c f(n)$ for some $c<1$ when n sufficiently large $f(n)$ grows polynomially faster than $n^{\log _{b} a}$

Does not cover everything: gaps between 1 and 2, and 2 and 3
Guess and prove by induction for other cases

Dynamic Programming

Overlapping subproblems: avoid recomputing common partial results
Often: computing optimum: optimal substructure but evaluates multiple choices, unlike greedy

Binary choice (choose or don't choose an item)
n-ary choice (multiple options): rod cutting
Adding one more dimension (subset sum, knapsack)

Pseudopolynomial cases: proportional to one of input values actually exponential in number of bits for that input value

Strengthening Assumptions

Solve more than was asked for sort-and-count for counting inversions

Return more than was asked for tree problems: balanced trees, well-ordered nodes

Avoid recomputations!

Space-Time Tradeoff

Use more time to save some space

Sometimes, same asymptotic time (more rarely)
Hirschberg sequence alignment, $T(n)=2 T(n / 2)+O\left(n^{2}\right) \Rightarrow O\left(n^{2}\right)$

More often: higher time complexity for smaller space
coin game: $T(n)=T(n-1)+O\left(n^{2}\right) \Rightarrow O\left(n^{3}\right)$

Network Flows: Ford-Fulkerson

Flow networks directed, source-sink, edge capacities
Maximum flow $=$ minimum cut.
Residual graph for max flow disconnects s from t (cut).
Max flow: forward edges saturated, backward edges have no flow.
Complexity: $O\left(m n C_{\max }\right)$ (Ford-Fulkerson), $O\left(m^{2} n\right)$
(Edmonds-Karp), $O\left(m n^{2}\right)$ (Dinitz)

Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.
Maximum bipartite matching: $O(m n)$ time

P and NP / Solver vs. Certifier

- P: Decision problems with a polynomial time algorithm.
- NP: Decision problems with a polynomial time certifier.

Intuition: A correct solution can be certified in polynomial time.

Let X be a decision problem and s be problem instance (e.g. $s=\langle G, k\rangle$ for Independent Set)

Poly-time solver. Algorithm $A(s)$ such that $A(s)=$ Yes iff correct answer is Yes, and running time polynomial time in $|s|$

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s, there is some t such that $C(s, t)=$ Yes iff correct answer is Yes, and running time is polynomial in $|s|$.

- t is the "certificate" or hint. Must also be polynomial-size in $|s|$

Approximation Algorithms

- ρ-approximation algorithm
- Runs in polynomial time
- Solves arbitrary instance of the problem
- Guaranteed to find a solution within ratio ρ of optimum: $\frac{\text { value of our solution }}{\text { value of optimum solution }} \leq \rho$

Sometimes non-obvious (spanning tree to get cycle in TSP), both greedy and non-greedy (choose both nodes for vertex cover).

Examples:

- 1.5-approximation for Load Balancing
- 2-approximation for Clustering
- 2-approximation for Vertex Cover

Polynomial-Time Reduction

- $Y \leq_{P} X$
solveY (yInput)

Construct xInput	// poly-time
foo $=$ solveX (xInput)	// poly \# of calls
return yes/no based on foo // poly-time	

- Statement abut relative hardness

1. If $Y \leq_{P} X$ and $X \in P$, then $Y \in P$
2. If $Y \leq_{P} X$ and $Y \notin P$ then $X \notin P$

- To prove NP-Completeness, must reduce from NP-complete problem
(reduce NP-complete problem to the one considered)

Finding Reductions

Problems are very close (map to one another) SetCover and HittingSet

Problems may be are duals:
VertexCover and IndependentSet

Sometimes we construct gadgets
 3-SAT to IndependentSET

Randomized Algorithms

- Efficient in expectation
- Optimal with high probability
- Break (undesired) symmetry
- Show some solution exists, or derive bound on number

Types of randomized algorithms:

- Fail with some small probability (Monte Carlo)
- Always succeed, but running time is random (Las Vegas)

Techniques used in proof:
expected value, union bound, write sum in two ways

