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Stable matchings: Gale-Shapley

What’s representative?

Helper properties
unmatched college: has not offered to some student
student options get better during a run

Invariants (for loops)
once student matched, stays matched

Nondeterminism: different possible runs
here: with same result: same stable matching best for college,

worst for student among all stable matchings

These issues appear in many other algorithms

Algorithmic Complexity

f(n) = O(g(n)) (and Ω, Θ are relations between functions)

Can also see O(g(n)) as a class of functions that grow
asymptotically not faster than g

f(n) = O(g(n)) means
there exist c > 0 and n0 s.t. f(n) ≤ cg(n) ∀n ≥ n0

Can choose c and n0 as needed (arbitrarily large)

f(n) = Ω(g(n)) (lower bound) equivalent to g(n) = O(f(n))

f(n) = Θ(g(n)) equivalent to f(n) = O(g(n)) and f(n) = Ω(g(n))

Graph Searches

Need to distinguish directed from undirected graphs

Undirected graphs

DFS has tree edges and back edges (at least 2 levels up)
BFS has tree edges and non-tree edges (as most ±1 difference)

Directed graphs

DFS hat tree, back, cross and forward edges

BFS non-tree edges:
go at most 1 level down, same level, or any level up

Cycle detection: DFS, only back edges
Detect for directed graphs: mark nodes unvisited/open/closed

Directed Acyclic Graphs

DFS has no back edges (only tree, cross and forward edges)

Topological Ordering / Sorting
in linear time: O(V + E)

Some algorithms more efficient
e.g. find longest path (dynamic programming)

Amortized Analysis

Often, useful to count total work rather than work per iteration

naive analysis of BFS and DFS: O(V ), actual bound is O(V +E)

more complex: Union-Find, negative cycle detection

Minor data structure changes can improve runtime bound
e.g., updating indegree for topological sorting



Greedy

Make local choice that seems best now
earliest deadline for jobs
shortest edge for Kruskal, Prim
closest node for Dijkstra

For problems with optimal substructure property

Correctness Arguments

Greedy stays ahead

Exchange argument (compare to purported optimum)
careful if several optimal solutions

Divide and Conquer

Divide problem into several parts

Solve each instance

Combine solutions to solve original problem

Recurrences

Unroll (draw recursion tree)

Guess solution (f(n) ≤ c · g(n)), prove by strong induction

Use Master Theorem

Recurrences: Master Theorem

Let T (n) = aT (n/b) + f(n), with a ≥ 1, b > 1. Then:

1. T (n) = Θ(nlogb a) when f(n) = O(nlogb a−ε) for some ε > 0
f(n) grows polynomially slower than nlogb a pause

2. T (n) = Θ(nlogb a logn) when f(n) = Θ(nlogb a) (border case)
T (n) = Θ(nlogb a logk+1 n) when f(n) = Θ(nlogb a logk n)

3. T (n) = Θ(f(n)) when f(n) = Ω(nlogb a+ε) for some ε > 0 and
af(n/b) < cf(n) for some c < 1 when n sufficiently large
f(n) grows polynomially faster than nlogb a

Does not cover everything: gaps between 1 and 2, and 2 and 3

Guess and prove by induction for other cases

Strengthening Assumptions

Solve more than was asked for
sort-and-count for counting inversions

Return more than was asked for
tree problems: balanced trees, well-ordered nodes

Avoid recomputations!

Dynamic Programming

Overlapping subproblems: avoid recomputing common partial results

Often: computing optimum: optimal substructure
but evaluates multiple choices, unlike greedy

Binary choice (choose or don’t choose an item)

n-ary choice (multiple options): rod cutting

Adding one more dimension (subset sum, knapsack)

Pseudopolynomial cases: proportional to one of input values
actually exponential in number of bits for that input value

Space-Time Tradeoff

Use more time to save some space

Sometimes, same asymptotic time (more rarely)

Hirschberg sequence alignment, T (n) = 2T (n/2) +O(n2) ⇒ O(n2)

More often: higher time complexity for smaller space

coin game: T (n) = T (n− 1) +O(n2) ⇒ O(n3)



Network Flows: Ford-Fulkerson

Flow networks directed, source-sink, edge capacities

Maximum flow = minimum cut.

Residual graph for max flow disconnects s from t (cut).

Max flow: forward edges saturated, backward edges have no flow.

Complexity: O(mnCmax) (Ford-Fulkerson), O(m2n)
(Edmonds-Karp), O(mn2) (Dinitz)

Solve: node capacities, node-disjont paths, edge-disjoint paths, etc.

Maximum bipartite matching: O(mn) time

Polynomial-Time Reduction

I Y ≤P X
solveY(yInput)

Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I Statement abut relative hardness

1. If Y ≤P X and X ∈ P , then Y ∈ P
2. If Y ≤P X and Y /∈ P then X /∈ P

I To prove NP-Completeness, must reduce from NP-complete
problem
(reduce NP-complete problem to the one considered)

P and NP / Solver vs. Certifier
I P: Decision problems with a polynomial time algorithm.

I NP: Decision problems with a polynomial time certifier.

Intuition: A correct solution can be certified in polynomial time.

Let X be a decision problem and s be problem instance (e.g.,
s = 〈G, k〉 for Independent Set)

Poly-time solver. Algorithm A(s) such that A(s) = Yes iff correct
answer is Yes, and running time polynomial time in |s|
Poly-time certifier. Algorithm C(s, t) such that for every instance s,
there is some t such that C(s, t) = Yes iff correct answer is Yes,
and running time is polynomial in |s|.
I t is the “certificate” or hint. Must also be polynomial-size in |s|

Finding Reductions

Problems are very close (map to one another)
SetCover and HittingSet

Problems may be are duals:
VertexCover and IndependentSet

Sometimes we construct gadgets
3-SAT to IndependentSet

Approximation Algorithms

I ρ-approximation algorithm
I Runs in polynomial time
I Solves arbitrary instance of the problem
I Guaranteed to find a solution within ratio ρ of optimum:

value of our solution
value of optimum solution ≤ ρ

Sometimes non-obvious (spanning tree to get cycle in TSP),
both greedy and non-greedy (choose both nodes for vertex cover).

Examples:
I 1.5-approximation for Load Balancing
I 2-approximation for Clustering
I 2-approximation for Vertex Cover

Randomized Algorithms

I Efficient in expectation

I Optimal with high probability

I Break (undesired) symmetry

I Show some solution exists, or derive bound on number

Types of randomized algorithms:
I Fail with some small probability (Monte Carlo)
I Always succeed, but running time is random (Las Vegas)

Techniques used in proof:
expected value, union bound, write sum in two ways


