COMPSCI 311: Introduction to Algorithms

Lecture 25: Randomized and Approximation Algorithms

Marius Minea

University of Massachusetts Amherst

Review: Randomized Algorithms

» Efficient in expectation
» Optimal with high probability
» Break (undesired) symmetry

» Show some solution exists, or derive bound on number
Types of randomized algorithms:

» Fail with some small probability (Monte Carlo)
» Always succeed, but running time is random (Las Vegas)

Last time:
» Min-Cut This time:
» Contention Resolution » Median selection
» Max 3-SAT

Median Selection

Let's precisely define the median.

Given a set S = {a1,a2,...,a,}, the median is the kth smallest
element, where k = [n/2]:

e k=n/2, if n even

o k= (n+1)/2, if n odd

More generally: find k" smallest number. Complexity ?
k =1: min O(n)
k =n: max O(n)

k=n/2: ”?
O(nlogn) by sorting

Can do deterministic O(n) (Blum, Floyd, Pratt, Rivest, Tarjan '72)

Today: randomized (similar idea). Assume no duplicates.

Divide and Conquer: Choose a Splitter

» Choose a splitter (pivot) a; € S

» Find elements smaller and larger than splitter:
S ={aj:a; <a;}, ST ={a; :a; > a;}.
Cases:

» |S7| =k — 1: a; is the sought element, done
» |S™| > k: recurse on (S, k)

> |ST| < k—1: recurse on (ST, k — (]S +1))

How to choose splitter?

Would it help to land “close” to the sought element?
Not if we land inside the larger of the two sets.

Work done (splitting) is proportional to size of whole set
= Want recursive calls to work on (much) smaller sets

» Best splitter is the median!
T(n) <T(n/2)+cn = O(n) runtime

» Worst case: splitter is extremal element
T(n)<T(n—1)+cn

> General: splitter separates en elements, (1 — €)n remain
T(n)<T((1—¢€n)+cn
Tn)<en[l+(1—e)+(1—e?+.]<

— €

Randomized Splitters

Simple Idea: Choose splitter uniformly at random.

Can't hope to split into exactly half, but will see how long it takes
to separate at least 1/4

» Call a splitter central if it separates 1/4 of elements
» Prlcentralsplitter] = 1/2 (must be in [1/4, 3/4] length)
> expected number of attempts N: E[N]=1/p=2

A central splitter reduces the set to 3/4 the size.

= count phases of the algorithm, where (3)I+1n < |S| < (3)/n
(initially in phase 0)

Running Time Analysis

Let X be a random variable counting the elementary steps done by
the algorithm, and X; the steps in phase j

X =Xo+ X1 4+ Xo+...
One iteration on size n: cn steps.
Expected: two iterations per phase, size < (Za)]n

E[X] =3, B[X;] < Xj2en(3) = 2en 0;(5)) < 8en

Application: Randomized Quicksort

Modified Quicksort:

» Choose random pivot, retry if not central (expected tries: 2)
» Divide array into S—, St

» Recursively sort both

» Concatenate

Easy to analyze: expected work on each level is ©(n)

Can prove the same if continuing with any pivot

Weighted vertex cover

Definition. Given a graph G =(V, E), a vertex cover is a set SC V such that
each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex
cover of minimum weight.

weight =2 + 2 + 4 weight = 11

slide credit: Kevin Wayne / Pearson

Pricing method

Pricing method. Each edge must be covered by some vertex.
Edge e = (i, /) pays price p.=0 to use both vertex i and ;.

Fairness. Edges incident to vertex i should pay <w; in total.

for each vertexi: Yy p, = w,
em(i)

Fairness lemma. For any vertex cover S and any fair prices p.: Scp. < w(S).

Pf. Spos 3 w(S). =

e€EE T €S e=(i,])

E p. = ngWi =
t

sum fairness inequalities
for each node in

each edge e covered by
at least one node in S

slide credit: Kevin Wayne / Pearson

Pricing method

Set prices and find vertex cover simultaneously.

WEIGHTED-VERTEX-COVER (G, w)
S<@.
FOREACH e EE

pe<0.

WHILE (there exists an edge (i, j) such that neither i nor j is tight)
Select such an edge e = (i,).

Increase p. as much as possible until or j tight.

S < set of all tight nodes.

RETURN S.

slide credit: Kevin Wayne / Pearson

Pricing method example

b: tight c d
@ (b)
a: tight a: tight

price of edge a-b

0 0
vertex Wewgh\ 3 3 1

b: tight c d b: tight c
(© (@

d: tight

slide credit: Kevin Wayne / Pearson

Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.
Pf.
« Algorithm terminates since at least one new node becomes tight after
each iteration of while loop.

« Let S=set of all tight nodes upon termination of algorithm.
S is a vertex cover: if some edge (i,j) is uncovered, then neither i nor j

is tight. But then while loop would not terminate.

« Let $* be optimal vertex cover. We show w(S) =< 2 w(S*).

wi§)= Iw; =3 Zps 3 ZP=23Fp = 2WSH. .

i€S I€S e=(i,]) i€V e=(i,j) eEE

all nodes in S are tight ScV, each edge counted twice fairness lemma
prices = 0

30

slide credit: Kevin Wayne / Pearson

Knapsack Problem

» n items, weights w;, values v;, total capacity W
» Goal: maximize total value without exceeding capacity

item value weight
1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

» Knapsack is NP-complete: SUBSET-SuM <p KNAPSACK
> We already saw a O(nWW) dynamic programming algorithm

Knapsack Problem Dynamic Programming v1

Choose from objects 1 through j, index by achieved weight

OPT(j — 1,w)

OPT(j — 1,w) .
vj +OPT(j — 1,w — wjy) wj s w

w; > w
OPT(j,w) = {
max

Good for small (maximum) weight.

Knapsack Problem Dynamic Programming v2

Definition. OPT(i,v) = min weight of a knapsack for which we
can obtain a solution of value > v using a subset of items 1,...,14

OPT(i,v) = min {OPT(i — 1,v), w; + OPT(i — L,v — v;)}
OPT(i,v) =0 ifv<0
OPT(0,v) =00 ifv >0

» Running time is O(nV') where V' is an upper bound on total
value, e.g. V = nupax

» Not polynomial in input size

» Polynomial if values are small integers

Knapsack Problem Approximation Algorithm

Idea: round all values (up) to coarser units and run dynamic
programming algorithm

item value weight item value weight

1 934,221 1 1 1 1
2 50956342 2 2 6 2
3 17,810,013 5 3 18 5
4 21,217,800 6 4 22 6
5 27734384 7 5 28 7

The result will never exceed the weight capacity, but may lose some
value due to rounding error.

Rounding Details

Round to nearest multiple of some integer b:
» v; = original value. 5,956,342
> ;= [%—‘b = rounded value. 6,000,000

> [%w = value actually used in DP. 6

Analysis

» Let .S = rounded DP solution, S* = optimal solution
» We'll show that S gets nearly as much value as S*:

Z v; < Z Vi round up

ies* ies*
<> S optimal for rounded values
€S
<D (vi+b)
ies
< Z v; + nb
ies

§(1+E)Zvi

€S

rounding amount < b

The last inequality is true if nb < eZui. We need b < evax/n.
icS

Running Time

» Recall b < evpax/n.
We need b > 1, thus we can approximate if € > n/vyax.
Require € > —£37/vmayx for some ¢ > 1

> b= |€Umax/n) > Lmax —] > Cmax(] _ ey = Dmax o
Umax/b < cn/e.

P Umax = [Umax/b] < Umax/b+1<en/e+1

» Running time for rounded DP is O(n%tmax) = O(n?/e)

Theorem: The rounding algorithm computes a solution whose value
is within a (1 + €) factor (¢ > 0) of the optimum in O(n?/e) time.

