
COMPSCI 311: Introduction to Algorithms
Lecture 24: Randomized Algorithms

Marius Minea

University of Massachusetts Amherst

Why Randomized Algorithms ?
I Efficient in expectation

I Optimal with high probability

I Break (undesired) symmetry

I Show some solution exists, or derive bound on number

Types of randomized algorithms:
I Fail with some small probability

I Always succeed, but running time is random (perhaps
non-polynomial)

Examples
I Min-Cut
I Contention Resolution
I Max 3-SAT

Min-Cut Revisited

Given undirected G = (V, E), partition V in two sets (S, V \ S)
minimizing |Cmin| = |{(u, v) ∈ E, u ∈ S, v ∈ V \ S}|

Cut minimum number of edges to disconnect graph

Can find minimum emph{s – t cut (fixed s and t)) in directed graph
(network flow)

This is global min-cut – is it harder ?

Global Min-Cut: Reduction to Network Flows

I duplicate edges, make directed: (u, v) and (v, u)

I pick arbitrary s (must be on some part of cut)

I pick each node in V \ {s} as t, run network flow

I choose smallest of n− 1 s− t cuts

Complexity? O(mn2)

Contraction Algorithm (Karger, 1995)

Idea: only edges across cut matter.

Like collapsing S and V \ S into one node each

Allow multiple edges between nodes (multigraph)

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes u1 and v1.

・Return the cut (all nodes that were contracted to form v1).

11
Reference: Thore Husfeldt

slide credit: Kevin Wayne / Pearson

Contraction algorithm: example execution

15

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

slide credit: Kevin Wayne / Pearson

What chance to get a min cut ?

Let Cmin be the set of edges in the minimum cut.

We can fail at each step, if an edge in Cmin is contracted.

Let k = |Cmin|. Fail in step 1 with probability pfail(1) = k/|E|.
But if any node v has degree < k, min cut is < k (isolate v)

Thus, |E| ≥ nk/2, and pfail(1) ≤ k

kn/2 = 2
n

Need to merge (contract) nodes n− 2 times, until two left.

Each time, |E′| ≥ kn′/2

psuc = psuc(1)psuc(2) · · · psuc(n− 2) ≥ n−2
n

n−3
n−1 . . . 1

3 = 2
n(n−1)

Expected polynomial number of runs to succeed!

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.

Claim. If we repeat the contraction algorithm n2 ln n times,  
then the probability of failing to find the global min-cut is ≤ 1 / n2.

Pf. By independence, the probability of failure is at most

14

€

1− 2
n2

$
%

&
'
(
n2 lnn

= 1− 2
n2

$
%

&
'
(

1
2n

2)

*
+
+

,

-
.
.

2lnn

≤ e−1()
2lnn

= 1
n2

(1 – 1/x)x ≤ 1/e

 with independent random choices,

slide credit: Kevin Wayne / Pearson

How many minimum cuts?

A graph may have several minimum cuts

When computing probability to succeed, we actually proved more!

We’ve shown the probability to return any minimum cut is ≥ 2
n(n−1)

But any two cuts are distinct! Let their number be c

pmin−cut = pmin−cut1 + . . . + pmin−cutc ≥ c 2
n(n−1)

But pmin−cut ≤ 1 ⇒ c ≤ n(n− 1)/2

Contention resolution in a distributed system

Contention resolution. Given n processes P1, …, Pn, each competing for

access to a shared database. If two or more processes access the database

simultaneously, all processes are locked out. Devise protocol to ensure all

processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

4

P1

P2

Pn

. 

. 

.

slide credit: Kevin Wayne / Pearson

Contention Resolution: randomized protocol
Counterproductive if all request at once

Protocol: Each process requests access with probability p.

Probability of process i to succeed:
it requests access: p
noone else requests access: (1− p)n−1 ⇒ psuc = p(1− p)n−1

Maximize: derivative f ′(p) = 0: ((1−p)− (n− 1)p)(1−p)n−2 = 0

⇔ (1− p)− (n− 1)p = 0 ⇔ p = 1/n

Success probability: psuc = 1
n(1− 1

n)n−1 = 1
n−1(1− 1

n)n ∈ [1
en , 1

2n]

We know limn→∞(1− 1
n)n = 1

e ⇒ in the limit psuc ' 1
en = Θ(1/n)

Success probability of some process in a given round: n · psuc ' 1
e

Expected waiting time for one process: 1
psuc
' e · n

Randomization can be efficient!

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment

that satisfies as many clauses as possible.

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ½,

independently for each variable.

24

€

C1 = x2 ∨ x3 ∨ x4
C2 = x2 ∨ x3 ∨ x4
C3 = x1 ∨ x2 ∨ x4
C4 = x1 ∨ x2 ∨ x3
C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause

slide credit: Kevin Wayne / Pearson

What does this simple idea get us ?

Probability of all 3 literals in a clause false: (1
2)3 = 1

8

Probability of a clause satisfied: 1− 1
8 = 7

8

⇒ for k clauses, expected 7
8k are satisfied

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that

satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious

property by showing that a random construction produces it with  
positive probability!

26

slide credit: Kevin Wayne / Pearson

What else does this simple idea get us ?

Every 3-SAT instance with ≤ 7 clauses is satisfiable!
because there is some assignment satisfying ≥ 7

8k, and 7
8k > k − 1

for k ≤ 7, thus all k must be satisfied

Probability of random assignment satisfying ≥ 7
8k clauses is ≥ 1

8k

Let pj = probability that j clauses are satisfied.
Group expected number by j < 7

8k and j ≥ 7
8k.

7
8k = ∑

j< 7
8 k j · pj + ∑

j≥ 7
8 k j · pj

largest j in left sum is < 7
8k ≤ 7k−1

8
≤ (7

8k − 1
8) ∑

j< 7
8 k pj + k

∑
j≥ 7

8 k pj

≤ (7
8k − 1

8) · 1 + kpsuc

Thus, psuc ≥ 1
8k

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until

one of them satisfies ≥ 7k / 8 clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability ≥ 1 / (8k). 
By the waiting-time bound, the expected number of trials to find the

satisfying assignment is at most 8k. ▪

28

slide credit: Kevin Wayne / Pearson

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson’s MAX-3-SAT algorithm.

 
Remark. Can always convert a Las Vegas algorithm into Monte Carlo, 
but no known method (in general) to convert the other way.

30

stop algorithm
after a certain point

slide credit: Kevin Wayne / Pearson

