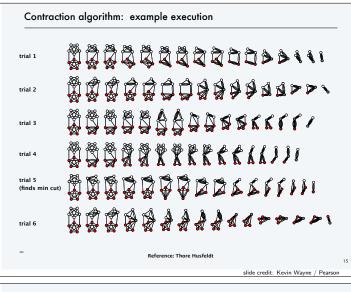
COMPSCI 311: Introduction to Algorithms Lecture 24: Randomized Algorithms Marius Minea University of Massachusetts Amherst	 Why Randomized Algorithms ? Efficient in expectation Optimal with high probability Break (undesired) symmetry Show some solution exists, or derive bound on number Types of randomized algorithms: Fail with some small probability Always succeed, but running time is random (perhaps non-polynomial) Examples Min-Cut Contention Resolution Max 3-SAT
Min-Cut Revisited	Global Min-Cut: Reduction to Network Flows
Given undirected $G = (V, E)$, partition V in two sets $(S, V \setminus S)$ minimizing $ C_{\min} = \{(u, v) \in E, u \in S, v \in V \setminus S\} $ Cut minimum number of edges to disconnect graph Can find minimum emph{s - t cut (fixed s and t)) in directed graph (network flow) This is global min-cut – is it harder ?	 duplicate edges, make directed: (u, v) and (v, u) pick arbitrary s (must be on some part of cut) pick each node in V \ {s} as t, run network flow choose smallest of n − 1 s − t cuts Complexity? O(mn²)
Contraction Algorithm (Karger, 1995) Idea: only edges across cut matter. Like collapsing S and $V \setminus S$ into one node each Allow multiple edges between nodes (multigraph)	 Contraction algorithm Contraction algorithm. [Karger 1995] Pick an edge e = (u, v) uniformly at random. Contract edge e. replace u and v by single new super-node w preserve edges, updating endpoints of u and v to w keep parallel edges, but delete self-loops Repeat until graph has just two nodes u₁ and v₁. Return the cut (all nodes that were contracted to form v₁).
	Reference: Thore Husfeldt



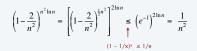
Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

with independent random choices,

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1/n^2$.

Pf. By independence, the probability of failure is at most



Kevin Wayne / Pearson

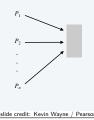
14

Contention resolution in a distributed system

Contention resolution. Given *n* processes $P_1, ..., P_n$, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.



What chance to get a min cut ?

Let C_{\min} be the set of edges in the minimum cut. We can fail at each step, if an edge in C_{\min} is contracted. Let $k = |C_{\min}|$. Fail in step 1 with probability $p_{\text{fail}}(1) = k/|E|$. But if any node v has degree < k, min cut is < k (isolate v) Thus, $|E| \ge nk/2$, and $p_{\text{fail}}(1) \le \frac{k}{kn/2} = \frac{2}{n}$ Need to merge (contract) nodes n - 2 times, until two left. Each time, $|E'| \ge kn'/2$ $p_{\text{suc}} = p_{\text{suc}}(1)p_{\text{suc}}(2)\cdots p_{\text{suc}}(n-2) \ge \frac{n-2}{n}\frac{n-3}{n-1}\dots\frac{1}{3} = \frac{2}{n(n-1)}$ Expected *polynomial* number of runs to succeed!

How many minimum cuts?

A graph may have several minimum cuts

When computing probability to succeed, we actually proved more! We've shown the probability to return any minimum cut is $\geq \frac{2}{n(n-1)}$ But any two cuts are distinct! Let their number be c

 $p_{\min-\text{cut}} = p_{\min-\text{cut}_1} + \dots + p_{\min-\text{cut}_c} \ge c_{\overline{n(n-1)}}^2$ But $p_{\min-\text{cut}} \le 1 \implies c \le n(n-1)/2$

Contention Resolution: randomized protocol

Counterproductive if all request at once

Protocol: Each process requests access with probability p.

Probability of process *i* to succeed: it requests access: *p* noone else requests access: $(1-p)^{n-1} \Rightarrow p_{suc} = p(1-p)^{n-1}$ Maximize: derivative f'(p) = 0: $((1-p) - (n-1)p)(1-p)^{n-2} = 0$ $\Leftrightarrow (1-p) - (n-1)p = 0 \Rightarrow p = 1/n$ Success probability: $p_{suc} = \frac{1}{n}(1-\frac{1}{n})^{n-1} = \frac{1}{n-1}(1-\frac{1}{n})^n \in [\frac{1}{en}, \frac{1}{2n}]$ We know $\lim_{n\to\infty}(1-\frac{1}{n})^n = \frac{1}{e} \Rightarrow$ in the limit $p_{suc} \simeq \frac{1}{en} = \Theta(1/n)$ Success probability of *some* process in a given round: $n \cdot p_{suc} \simeq \frac{1}{e}$ Expected waiting time for one process: $\frac{1}{p_{suc}} \simeq e \cdot n$ Randomization can be efficient!

Maximum 3-satisfiability exactly 3 distinct literals per clause	What does this simple idea get us ?
Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.	
$C_1 = x_2 \vee \overline{x_3} \vee \overline{x_4}$ $C_2 = x_2 \vee x_3 \vee \overline{x_4}$ $C_3 = \overline{x_1} \vee x_2 \vee x_4$ $C_4 = \overline{x_1} \vee \overline{x_2} \vee x_3$ $C_5 = x_1 \vee \overline{x_2} \vee \overline{x_4}$	Probability of all 3 literals in a clause false: $(\frac{1}{2})^3 = \frac{1}{8}$ Probability of a clause satisfied: $1 - \frac{1}{8} = \frac{7}{8}$ \Rightarrow for k clauses, expected $\frac{7}{8}k$ are satisfied
Remark. NP-hard search problem. Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.	
slide credit: Kevin Wayne / Pearson The probabilistic method	What else does this simple idea get us ?
Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses. Pf. Random variable is at least its expectation some of the time.	Every 3-SAT instance with ≤ 7 clauses is satisfiable! because there is some assignment satisfying $\geq \frac{7}{8}k$, and $\frac{7}{8}k > k - 1$ for $k \leq 7$, thus all k must be satisfied
Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
slide credit: Kevin Wayne / Pearson	
Maximum 3-satisfiability: analysis Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\ge 7k / 8$ clauses.	Monte Carlo vs. Las Vegas algorithms Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer. Ex: Contraction algorithm for global min cut.
Theorem. Johnson's algorithm is a 7/8-approximation algorithm. Pf. By previous lemma, each iteration succeeds with probability $\geq 1 / (8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8k$.	Las Vegas. Guaranteed to find correct answer, likely to run in poly-time. Ex: Randomized quicksort, Johnson's Max-3-SaT algorithm.
	Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.
28 slide credit: Kevin Wayne / Pearson	slide credit: Kevin Wəyne / Pearson