	Coping With NP-Completeness
COMPSCI 311: Introduction to Algorithms Lecture 23: Approximation Algorithms Marius Minea	 Suppose you want to solve an NP-complete problem? What should you do? You can't design an algorithm to do <i>all</i> of the following: Solve arbitrary instances of the problem Solve problem to optimality Solve problem in polynomial time
University of Massachusetts Amherst	Coning strategies
	1 Design algorithms for special cases of problem
	2. Design approximation algorithms or heuristics.
	 Use randomization (efficient in expectation and/or optimal with high probability)
Approximation Algorithms	Load Balancing
 <i>ρ</i>-approximation algorithm Runs in polynomial time Solves arbitrary instance of the problem Guaranteed to find a solution within ratio <i>ρ</i> of optimum: value of our solution value of optimum solution ≤ <i>ρ</i> Today: Load Balancing Clustering 	There are m machines and n jobs to be done. Assign jobs to balance load (largest load is minimal) \Rightarrow minimum completion time (makespan) Machines: $1, 2, \dots, m$ Job times: t_1, t_2, \dots, t_n Assignment: $A_i \subseteq \{1, 2, \dots, n\}$ = set of jobs for machine i
Preliminary Analysis	Simple Algorithm: Assign to lightest load
Let T^* be the optimal makespan (smallest possible completion time) What can we say about T^* ? $T^* \ge \frac{1}{m} \sum_{j=1}^n t_j$ otherwise, total processing time $< m \cdot \frac{1}{m} \sum_{j=1}^n t_j = \sum_{j=1}^n t_j$ $T^* \ge \max_j t_j$ (at least as much as largest job time)	for i = 1 to m do $T_i = 0, A_i = \emptyset$ for j = 1 to n do choose minimum T_i $T_i = T_i + t_j, A_i = A_i \cup \{j\}$ Complexity? $O(n \log m \text{ with priority queue}$ Example: result for jobs 2, 3, 4, 6, 2, 2 (in order) What if order is 6, 4, 3, 2, 2, 2 ?

Greedy Algorithm that Works

Our algorithm avoids overlap by choosing a new center that is at least 2r away from all selected centers.

Replace this condition by choosing a center that is *furthest away* from all selected centers!

$$\begin{split} & \text{if } k \geq |P| \text{ then return } P \\ & \text{choose } p \in P, \text{ let } C = \{p\} \\ & \text{while } |C| < k \text{ do} \\ & \text{choose } p \in P \text{ maximizing } d(p,C) \\ & C = C \cup \{p\} \\ & \text{return } C \end{split}$$

Claim: algorithm returns C with $r(C) \leq 2r^*$ (at most twice optimal radius)

Correctness Proof

Similar argument: assume $r(C) > 2r^*$.

There must be a point p more than $2r^*$ away from any center in C.

Claim: whenever the algorithm adds a center c' to current C', it is at least $2r^*$ away from all selected centers (because we choose the farthest, and p is $> 2r^*$ away):

 $d(c',C') \ge d(s,C') \ge d(s,C) > 2r^*.$

So our algorithm is a correct implementation of the previous one, but that algorithm would still not have selected p after k iterations, so no cover with $\leq r^*$ would exist, contradiction!

Dominating set reduces to center selection

Theorem. Unless P=NP, there no $\rho\text{-approximation}$ for center selection problem for any $\rho<2.$

Pf. We show how we could use a $(2-\epsilon)$ approximation algorithm for Center-Selection selection to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET.
- Construct instance G' of CENTER-SELECTION with sites V and distances
 dist(u, v) = 1 if (u, v) ∈ E
- dist(u, v) = 2 if $(u, v) \notin E$
- Note that G' satisfies the triangle inequality.
- G has dominating set of size k iff there exists k centers C* with r(C*) = 1.
 Thus, if G has a dominating set of size k, a (2 ε)-approximation
- algorithm for CENTER-SELECTION would find a solution C^* with $r(C^*) = 1$ since it cannot use any edge of distance 2.

24

slide credit: Kevin Wayne / Pearson