
COMPSCI 311: Introduction to Algorithms
Lecture 23: Approximation Algorithms

Marius Minea

University of Massachusetts Amherst

Coping With NP-Completeness

Suppose you want to solve an NP-complete problem? What should
you do?

You can’t design an algorithm to do all of the following:

1. Solve arbitrary instances of the problem
2. Solve problem to optimality
3. Solve problem in polynomial time

Coping strategies

1. Design algorithms for special cases of problem.

2. Design approximation algorithms or heuristics.

3. Use randomization
(efficient in expectation and/or optimal with high probability)

Approximation Algorithms

I ρ-approximation algorithm
I Runs in polynomial time
I Solves arbitrary instance of the problem
I Guaranteed to find a solution within ratio ρ of optimum:

value of our solution
value of optimum solution ≤ ρ

Today:
I Load Balancing
I Clustering

Load Balancing

There are m machines and n jobs to be done.

Assign jobs to balance load (largest load is minimal)
⇒ minimum completion time (makespan)

Machines: 1, 2, . . . ,m
Job times: t1, t2, . . . , tn
Assignment: Ai ⊆ {1, 2, . . . , n} = set of jobs for machine i

Preliminary Analysis

Let T ∗ be the optimal makespan (smallest possible completion time)
What can we say about T ∗?

I T ∗ ≥ 1
m

n∑

j=1
tj

otherwise, total processing time < m · 1
m

∑n
j=1 tj = ∑n

j=1 tj

I T ∗ ≥ max
j
tj (at least as much as largest job time)

Simple Algorithm: Assign to lightest load

for i = 1 to m do Ti = 0, Ai = ∅
for j = 1 to n do

choose minimum Ti

Ti = Ti + tj , Ai = Ai ∪ {j}

Complexity?
O(n logm with priority queue

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 601

Designing the Algorithm
We first consider a very simple greedy algorithm for the problem. The algorithm
makes one pass through the jobs in any order; when it comes to job j, it assigns
j to the machine whose load is smallest so far.

Greedy-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i) = ∅ for all machines Mi

For j = 1, . . . , n

Let Mi be a machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i) ← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

For example, Figure 11.1 shows the result of running this greedy algorithm
on a sequence of six jobs with sizes 2, 3, 4, 6, 2, 2; the resulting makespan is 8,
the “height” of the jobs on the first machine. Note that this is not the optimal
solution; had the jobs arrived in a different order, so that the algorithm saw
the sequence of sizes 6, 4, 3, 2, 2, 2, then it would have produced an allocation
with a makespan of 7.

Analyzing the Algorithm
Let T denote the makespan of the resulting assignment; we want to show that
T is not much larger than the minimum possible makespan T∗. Of course,
in trying to do this, we immediately encounter the basic problem mentioned
above: We need to compare our solution to the optimal value T∗, even though
we don’t know what this value is and have no hope of computing it. For the

6

2

2
2

3
4

M1 M2 M3

Figure 11.1 The result of running the greedy load balancing algorithm on three
machines with job sizes 2, 3, 4, 6, 2, 2.Example: result for jobs 2, 3, 4, 6, 2, 2 (in order)

What if order is 6, 4, 3, 2, 2, 2 ?

Analysis

Consider moment when last job is added, leading to highest load
11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 603

Mi

The contribution of
the last job alone is
at most the optimum.

Just before adding
the last job, the load
on Mi was at most
the optimum.

Figure 11.2 Accounting for the load on machine Mi in two parts: the last job to be
added, and all the others.

had load at least Ti − tj. Thus, adding up the loads of all machines, we have�
k Tk ≥ m(Ti − tj), or equivalently,

Ti − tj ≤ 1
m

�

k

Tk.

But the value
�

k Tk is just the total load of all jobs
�

j tj (since every job is
assigned to exactly one machine), and so the quantity on the right-hand side
of this inequality is exactly our lower bound on the optimal value, from (11.1).
Thus

Ti − tj ≤ T∗.

Now we account for the remaining part of the load on Mi, which is just the
final job j. Here we simply use the other lower bound we have, (11.2), which
says that tj ≤ T∗. Adding up these two inequalities, we see that

Ti = (Ti − tj) + tj ≤ 2T∗.

Since our makespan T is equal to Ti, this is the result we want.

It is not hard to give an example in which the solution is indeed close
to a factor of 2 away from optimal. Suppose we have m machines and
n = m(m − 1) + 1 jobs. The first m(m − 1) = n − 1 jobs each require time tj = 1.
The last job is much larger; it requires time tn = m. What does our greedy
algorithm do with this sequence of jobs? It evenly balances the first n − 1 jobs,
and then has to add the giant job n to one of them; the resulting makespan is
T = 2m − 1.

Analysis

Consider moment when job leading to highest load is added.

new load = old load + ti

The old load was smallest among all machines at the time
and the total load included at most all jobs without i:

old load ≤ 1
m
· ((

n∑

j=1
tj)− ti) <

1
m

n∑

j=1
tj ≤ T ∗

new load = old load + ti < T ∗ + T ∗ = 2T ∗

The algorithm gives a 2-approximation.

Worst Case604 Chapter 11 Approximation Algorithms

M1

The greedy
algorithm was
doing well
until the last
job arrived.

M2 M3 M4

Approximate solution
via greedy algorithm:

M1 M2 M3 M4

Optimal solution:

Figure 11.3 A bad example for the greedy balancing algorithm with m = 4.

What does the optimal solution look like in this example? It assigns the
large job to one of the machines, say, M1, and evenly spreads the remaining
jobs over the other m − 1 machines. This results in a makespan of m. Thus
the ratio between the greedy algorithm’s solution and the optimal solution is
(2m − 1)/m = 2 − 1/m, which is close to a factor of 2 when m is large.

See Figure 11.3 for a picture of this with m = 4; one has to admire the
perversity of the construction, which misleads the greedy algorithm into
perfectly balancing everything, only to mess everything up with the final giant
item.

In fact, with a little care, one can improve the analysis in (11.3) to show
that the greedy algorithm with m machines is within exactly this factor of
2 − 1/m on every instance; the example above is really as bad as possible.

Extensions: An Improved Approximation Algorithm
Now let’s think about how we might develop a better approximation
algorithm—in other words, one for which we are always guaranteed to be
within a factor strictly smaller than 2 away from the optimum. To do this, it
helps to think about the worst cases for our current approximation algorithm.
Our earlier bad example had the following flavor: We spread everything out
very evenly across the machines, and then one last, giant, unfortunate job
arrived. Intuitively, it looks like it would help to get the largest jobs arranged
nicely first, with the idea that later, small jobs can only do so much damage.
And in fact, this idea does lead to a measurable improvement.

Thus we now analyze the variant of the greedy algorithm that first sorts
the jobs in decreasing order of processing time and then proceeds as before.

Worst case is arbitrarily close to 2:
Consider m(m− 1) jobs of time 1. They will be perfectly balanced.
Then a huge job of time m comes along ⇒ makespan 2m− 1

Optimal distribution would have job of size m by itself, makespan m

Improved: Large Jobs First

Intuition: large job coming last is worst case ⇒ sort jobs by time:

t1 ≥ t2 ≥ . . . ≥ tn. Again, assign next job to smallest load.

One more observation:
if m < n, one machine must do two jobs from set t1, t2, . . . , tm+1

⇒ T ∗ ≥ tm + tm+1 ≥ 2tm+1

Largest Jobs First: Analysis

Again, consider moment when job leading to highest load is added.

new load = old load + ti

If i ≤ m, will be added to empty machine

new load = 0 + ti ≤ T ∗

If i > m, we have ti ≤ tm+1

old load < 1
m

∑n
j=1 tj ≤ T ∗

new load < 1
m

∑n
j=1 tj + ti ≤ T ∗ + tm+1 ≤ T ∗ + 1/2T∗ = 1.5T ∗

Algorithm is a 1.5-approximation (no load is > 1.5 x optimum)

More careful analysis can improve bound to 4/3 (tight)

Clustering or Center Selection

Find k centers covering all given points, with minimal radius
(k is fixed and given)

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane,

dist(x, y) = Euclidean distance.

Remark: search can be infinite!

19

center

r(C)

site

k = 4 centers

Problem Setup

I Input: set of n points P ={p1, p2, . . . , pn} in R2. A number k.

I Goal: Find k centers C = {c1, c2, . . . , ck} in R2 such that
every point p ∈ P is close to some center c ∈ C.

Want to minimize maxp∈P d(p, C)
where d(p, C) = mini d(p, ci)

Equivalent statement: find minimum value R such that all points
can be covered with k discs of radius R.

Can apply to other notions of distance, as long as it’s symmetric
and satisfies triangle inequality.

Greedy can be arbitrarily bad!
Place first center at best location, each next one to get best
reduction of radius

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a

single center, and then keep adding centers so as to reduce the covering

radius each time by as much as possible.

Remark: arbitrarily bad!

20

greedy center 1

center

site

k = 2 centers

First center will be placed in the middle, R ' 1/2 ·maxDist

No matter where you place second center, R does not decrease
(one cluster still closer to first center)

But: could have placed centers within the two clusters.

Knowing Optimal Radius Helps608 Chapter 11 Approximation Algorithms

Center c* used in optimal solution

Site s covered by c*

Circle of twice the radius at s
covers everything that c* covered.

Figure 11.4 Everything covered at radius r by c∗ is also covered at radius 2r by s.

our job is to find some set of k centers C whose covering radius is not much
more than r. It turns out that finding a set of k centers with covering radius at
most 2r can be done relatively easily.

Here is the idea: We can use the existence of this solution C∗ in our
algorithm even though we do not know what C∗ is. Consider any site s ∈ S.
There must be a center c∗ ∈ C∗ that covers site s, and this center c∗ is at
distance at most r from s. Now our idea would be to take this site s as a
center in our solution instead of c∗, as we have no idea what c∗ is. We would
like to make s cover all the sites that c∗ covers in the unknown solution C∗.
This is accomplished by expanding the radius from r to 2r. All the sites that
were at distance at most r from center c∗ are at distance at most 2r from s
(by the triangle inequality). See Figure 11.4 for a simple illustration of this
argument.

S� will represent the sites that still need to be covered
Initialize S� = S

Let C = ∅
While S� �= ∅
Select any site s ∈ S� and add s to C

Delete all sites from S� that are at distance at most 2r from s

EndWhile

If |C| ≤ k then

Return C as the selected set of sites

Else

Algorithm assuming optimal radius

Let C = ∅
while P 6= ∅ do

choose p ∈ P , let C = C ∪ {p}
delete from P all points at distance ≤ 2r from p

if |C| ≤ k then solution found
else there is no solution with radius ≤ r

Correctness Proof

Any solution found has radius ≤ 2r – by design

Assume algorithm returns more than k centers.
Then any cover with ≤ k centers has radius > r.

Proof by contradiction. Assume cover |C∗| ≤ k with radius r∗ ≤ r
Each greedy center c ∈ C is covered by some close optimal center
c∗ ∈ C∗, with d(c, c∗) ≤ r∗.
Each optimal center c∗ can’t be close to two greedy centers c, c′.
Triangle inequality would give

d(c, c′) ≤ d(c, c∗) + d(c∗, c′) ≤ r∗ + r∗ ≤ 2r
but d(c, c′) > 2r since greedy algorithm eliminates closer points.

Thus, each greedy center c has a distinct optimal center c∗, and
|C| ≤ |C∗|, contradiction.

What if we don’t know the optimal radius?

It’s not reasonable to assume we know the solution

We know 0 < r∗ ≤ maxDist between two points

Refine interval for covering radius by binary search.
Start with maxDist/2

Each try: there is a set with radius 2r or there is no set with radius r

But there is a greedy algorithm without knowing optimal radius!

Greedy Algorithm that Works

Our algorithm avoids overlap by choosing a new center that is
at least 2r away from all selected centers.

Replace this condition by choosing a center that is furthest away
from all selected centers!

if k ≥ |P | then return P

choose p ∈ P , let C = {p}
while |C| < k do

choose p ∈ P maximizing d(p, C)
C = C ∪ {p}

return C

Claim: algorithm returns C with r(C) ≤ 2r∗
(at most twice optimal radius)

Correctness Proof

Similar argument: assume r(C) > 2r∗.

There must be a point p more than 2r∗ away from any center in C.

Claim: whenever the algorithm adds a center c′ to current C ′, it is
at least 2r∗ away from all selected centers (because we choose the
farthest, and p is > 2r∗ away):

d(c′, C ′) ≥ d(s, C ′) ≥ d(s, C) > 2r∗.

So our algorithm is a correct implementation of the previous one,
but that algorithm would still not have selected p after k iterations,
so no cover with ≤ r∗ would exist, contradiction!

Dominating set reduces to center selection

Theorem. Unless P = NP, there no ρ-approximation for center selection  
problem for any ρ < 2.

Pf. We show how we could use a (2 – ε) approximation algorithm for  
CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

・Let G = (V, E), k be an instance of DOMINATING-SET.

・Construct instance Gʹ of CENTER-SELECTION with sites V and distances
- dist(u, v) = 1 if (u, v) ∈ E
- dist(u, v) = 2 if (u, v) ∉ E

・Note that Gʹ satisfies the triangle inequality.

・G has dominating set of size k iff there exists k centers C* with r(C*) = 1.

・Thus, if G has a dominating set of size k, a (2 – ε)-approximation

algorithm for CENTER-SELECTION would find a solution C* with r(C*) = 1

since it cannot use any edge of distance 2. ▪

24

slide credit: Kevin Wayne / Pearson

