



Subset Sum Example	Subset Sum Proof
Example. $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$ Item 1 2 3 4 5 6 t_1 1 0 0 1 1 0 1 0 0 f_1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 <td> All numbers (including W) are polynomially long. If Φ satisfiable, Select t_i if x_i = 1 in satisfying assignment else select f_i. Take y_j, z_j as needed. If subset exists with sum W Either t_i or f_i is chosen. Assign x_i accordingly. For each clause, at least one term must be selected, otherwise clause digit is < 3. </td>	 All numbers (including W) are polynomially long. If Φ satisfiable, Select t_i if x_i = 1 in satisfying assignment else select f_i. Take y_j, z_j as needed. If subset exists with sum W Either t_i or f_i is chosen. Assign x_i accordingly. For each clause, at least one term must be selected, otherwise clause digit is < 3.
<pre>Warning Theorem. SUBSETSUM is NP-Complete. But Subset Sum can be tricky! If reducing SUBSETSUM ≤_P X, reduction needs to be polynomial in log(W) (number of digits).</pre>	Graph ColoringDef. A k-coloring of a graph $G = (V, E)$ is a function $f: V \to \{1, \dots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?Many applications• Actually coloring maps!• Scheduling jobs on machine with competing resources.• Allocating variables to registers in a compiler.Claim. 2-COLORING \in P (equivalent to bipartite testing)Theorem. 3-COLORING is NP-Complete.
Reduction	Reduction
► Reduce from 3-SAT. Skeleton: 1 color for True, 1 for False 3 extra nodes in a clique <i>T</i> , <i>F</i> , <i>B</i> . For each variable x_i , two nodes v_{i0}, v_{i1} . Edges $(v_{i0}, B), (v_{i1}, B), (v_{i0}, v_{i1})$. Either v_{i0} or v_{i1} gets the <i>T</i> color. True False v_{i0}, v_{i1} . v_{i0}, v_{i1} . Either v_{i0} or v_{i1} gets the <i>T</i> color.	For clause $x_i \lor \neg x_j \lor x_k$

... any many others. See book or other sources for more examples. You can use *any known NP-complete* problem to prove a new problem is NP-complete.