COMPSCI 311: Introduction to Algorithms Lecture 22: Reductions and NP-Complete Problems Marius Minea University of Massachusetts Amherst slides credit: Dan Sheldon (adapted)
Intractability: quiz 1 \|s
Which of the following graph problems are known to be in NP? A. Is the length of the longest simple path $\leq k$? B. Is the length of the longest simple path $\geq k$? C. Is the length of the longest simple path $=k$? D. Find the length of the longest simple path. E. All of the above.

Subset Sum

Theorem. Subset sum is NP-complete.
Reduction from 3-SAT. (n variables, m clauses, base 10).

- All weights have $n+m$ digits
- Digits 1 to n : For variable x_{i}, create two items t_{i}, f_{i}
- Both have i th digit equal to 1
- All other items have zero in this digit
- i th digit of $W=1 \Rightarrow$ select exactly one of t_{i}, f_{i}
- The $n+j$ th digit corresponds to clause C_{j}
- If $x_{i} \in C_{j}$, set $n+j$ th digit of $t_{i}=1$
- If $\neg x_{i} \in C_{j}$, set $n+j$ th digit of $f_{i}=1$
- Everything else 0 .

NP-Complete Problems So Far

Theorem: IndependentSet, VertexCover, SetCover, SAT, 3-SAT, HAM-CYCLE, HAM-PATH, TSP are all NP-Complete.

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

Numerical problems

Subset Sum decision problem: given n items with weights w_{1}, \ldots, w_{n}, is there a subset of items whose weight is exactly W ?

Dynamic programming: $O(n W)$ pseudo-polynomial time algorithm (not polynomial in input length $n \log W$)

Subset Sum (cont.)

- Set $n+j$ th digit of $W=3$
- Consider a subset of items corresponding to a truth assignment (exactly one of t_{i}, f_{i})
- If C_{j} is not satisfied, then total in position $n+j$ is 0 , otherwise it is 1,2 , or 3
- Create two "dummy" items y_{j}, z_{j} with 1 in position $n+j$
- Can select dummies to yield total of 3 in position $n+j$ iff C_{j} is satisfied

Subset Sum Example

Example.

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Item	1	2	3	4	5	6	Item	1	2	3	4	5	6
t_{1}	1	0	0	1	0	0	y_{1}	0	0	0	1	0	0
f_{1}	1	0	0	0	1	1	z_{1}	0	0	0	1	0	0
t_{2}	0	1	0	0	1	0	y_{2}	0	0	0	0	1	0
f_{2}	0	1	0	1	0	1	z_{2}	0	0	0	0	1	0
t_{3}	0	0	1	1	0	1	y_{3}	0	0	0	0	0	1
f_{3}	0	0	1	0	1	0	z_{3}	0	0	0	0	0	1

Warning

Theorem. SubsetSum is NP-Complete
But Subset Sum can be tricky!

- If reducing SubsetSum $\leq_{P} X$, reduction needs to be polynomial in $\log (W)$ (number of digits).

Subset Sum Proof

- All numbers (including W) are polynomially long.
- If Φ satisfiable,
- Select t_{i} if $x_{i}=1$ in satisfying assignment else select f_{i}.
- Take y_{j}, z_{j} as needed.
- If subset exists with sum W
- Either t_{i} or f_{i} is chosen. Assign x_{i} accordingly.
- For each clause, at least one term must be selected, otherwise clause digit is <3.

Graph Coloring

Def. A k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1, \ldots, k\}$ such that for all $(u, v) \in E, f(u) \neq f(v)$.

Problem. Given $G=(V, E)$ and number k, does G have a k-coloring?

Many applications

- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-COLORING $\in P$ (equivalent to bipartite testing)
Theorem. 3-COLORING is NP-Complete.

Reduction

For clause $x_{i} \vee \neg x_{j} \vee x_{k}$

Clicker Question 2

Which of the following is true?

A: If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete

B : k-coloring is NP-complete since any 3-coloring is also a k-coloring for $k \geq 3$
C : k-coloring is not NP-complete since 3-coloring is the hardest case, for $k>3$ the coloring is easier

D: k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:

... any many others. See book or other sources for more examples.
You can use any known NP-complete problem to prove a new problem is NP-complete.

