
COMPSCI 311: Introduction to Algorithms
Lecture 22: Reductions and NP-Complete Problems

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

NP-Complete Problems So Far
Theorem: IndependentSet, VertexCover, SetCover,
SAT, 3-SAT, HAM-CYCLE, HAM-PATH, TSP are all
NP-Complete.

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle

Traveling-Salesman

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

Intractability: quiz 1

Which of the following graph problems are known to be in NP?

A. Is the length of the longest simple path ≤ k ?

B. Is the length of the longest simple path ≥ k ?

C. Is the length of the longest simple path = k ?

D. Find the length of the longest simple path.

E. All of the above.

 10

slide credit: Kevin Wayne / Pearson

Numerical problems

Subset Sum decision problem: given n items with weights
w1, . . . , wn, is there a subset of items whose weight is exactly W?

Dynamic programming: O(nW) pseudo-polynomial time algorithm
(not polynomial in input length n logW)

Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses, base 10).
I All weights have n+m digits

I Digits 1 to n: For variable xi, create two items ti, fi

I Both have ith digit equal to 1
I All other items have zero in this digit
I ith digit of W = 1 ⇒ select exactly one of ti, fi

I The n+ jth digit corresponds to clause Cj

I If xi ∈ Cj , set n+ jth digit of ti = 1
I If ¬xi ∈ Cj , set n+ jth digit of fi = 1
I Everything else 0.

Subset Sum (cont.)

I Set n+ jth digit of W = 3
I Consider a subset of items corresponding to a truth

assignment (exactly one of ti, fi)
I If Cj is not satisfied, then total in position n+ j is 0,

otherwise it is 1, 2, or 3
I Create two “dummy” items yj , zj with 1 in position n+ j
I Can select dummies to yield total of 3 in position n+ j iff
Cj is satisfied

Subset Sum Example

Example.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

Item 1 2 3 4 5 6
t1 1 0 0 1 0 0
f1 1 0 0 0 1 1
t2 0 1 0 0 1 0
f2 0 1 0 1 0 1
t3 0 0 1 1 0 1
f3 0 0 1 0 1 0
W 1 1 1 3 3 3

Item 1 2 3 4 5 6
y1 0 0 0 1 0 0
z1 0 0 0 1 0 0
y2 0 0 0 0 1 0
z2 0 0 0 0 1 0
y3 0 0 0 0 0 1
z3 0 0 0 0 0 1

Subset Sum Proof

I All numbers (including W) are polynomially long.

I If Φ satisfiable,
I Select ti if xi = 1 in satisfying assignment else select fi.
I Take yj , zj as needed.

I If subset exists with sum W

I Either ti or fi is chosen. Assign xi accordingly.
I For each clause, at least one term must be selected,

otherwise clause digit is < 3.

Warning

Theorem. SubsetSum is NP-Complete.

But Subset Sum can be tricky!
I If reducing SubsetSum ≤P X, reduction needs to be

polynomial in log(W) (number of digits).

Graph Coloring

Def. A k-coloring of a graph G = (V,E) is a function
f : V → {1, . . . , k} such that for all (u, v) ∈ E, f(u) 6= f(v).

Problem. Given G = (V,E) and number k, does G have a
k-coloring?

Many applications
I Actually coloring maps!
I Scheduling jobs on machine with competing resources.
I Allocating variables to registers in a compiler.

Claim. 2-coloring ∈ P (equivalent to bipartite testing)

Theorem. 3-coloring is NP-Complete.

Reduction

I Reduce from 3-SAT.

Skeleton: 1 color for True, 1 for False
3 extra nodes in a clique T, F,B.
For each variable xi, two nodes
vi0, vi1.
Edges (vi0, B), (vi1, B), (vi0, vi1).
Either vi0 or vi1 gets the T color.

488 Chapter 8 NP and Computational Intractability

v3

False

v1

True

v2

v3v1

v2

BaseB

FT

– –

–

Figure 8.11 The beginning of the reduction for 3-Coloring.

G we have defined thus far is pictured in Figure 8.11, and it already has some
useful properties.

. In any 3-coloring of G, the nodes vi and vi must get different colors, and
both must be different from Base.

. In any 3-coloring of G, the nodes True, False, and Base must get all three
colors in some permutation. Thus we can refer to the three colors as the
True color, the False color, and the Base color, based on which of these
three nodes gets which color. In particular, this means that for each i,
one of vi or vi gets the True color, and the other gets the False color. For
the remainder of the construction, we will consider the variable xi to
be set to 1 in the given instance of 3-SAT if and only if the node vi gets
assigned the True color.

So in summary, we now have a graph G in which any 3-coloring implicitly
determines a truth assignment for the variables in the 3-SAT instance. We
now need to grow G so that only satisfying assignments can be extended to
3-colorings of the full graph. How should we do this?

As in other 3-SAT reductions, let’s consider a clause like x1 ∨ x2 ∨ x3. In
the language of 3-colorings of G, it says, “At least one of the nodes v1, v2, or
v3 should get the True color.” So what we need is a little subgraph that we can
plug into G, so that any 3-coloring that extends into this subgraph must have
the property of assigning the True color to at least one of v1, v2, or v3. It takes
some experimentation to find such a subgraph, but one that works is depicted
in Figure 8.12.

Reduction

For clause xi ∨ ¬xj ∨ xk

vj0

vi1 T vk1 F

Proof

I Graph is polynomial in n+m.

I If satisfying assignment
I Color B, T, F then vi1 as T if φ(xi) = 1.
I Since clauses satisfied, can color each gadget.

I If graph 3-colorable
I One of vi0, vi1 must get T color.
I Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?

Clicker Question 2

Which of the following is true?

A: If we can reduce 3-coloring to k-coloring, then k-coloring is
NP-complete

B: k-coloring is NP-complete since any 3-coloring is also a
k-coloring for k ≥ 3

C: k-coloring is not NP-complete since 3-coloring is the hardest
case, for k > 3 the coloring is easier

D: k-coloring is not NP-complete because the 4-color theorem has
been proved

NP-Completeness Recap

Types of hard problems:

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesman

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

. . . any many others. See book or other sources for more examples.
You can use any known NP-complete problem to prove a new
problem is NP-complete.

