

Hamiltonian Cycle Problem

- HamCycle - Hamiltonian Cycle. Given directed graph $G=(V, E)$, is there a cycle that visits each vertex exactly once?

$\downarrow v_{1}, v_{3}, v_{2}, v_{5}, v_{4}, v_{6}$ is a Hamiltonian Cycle

Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

Reduction: Skeleton Construction

- n rows (bidirected paths) P_{1}, \ldots, P_{n} (one per variable)
- Row has $3 m+3$ vertices, connected to neighbors in forward/backward direction
- First and last vertex of row i connected to first and last of $i+1$.
- Source s connected to first and last of row 1.
- First and last of row n connected to t
- Edge (t, s)
- Skeleton has 2^{n} possible Hamiltonian Cycles, corresponding to truth assignments to x_{1}, \ldots, x_{n}
- Traverse $P_{i} \mathrm{~L}$ to $\mathrm{R} \Longleftrightarrow x_{i}=1$
- Traverse $P_{i} \mathrm{R}$ to $\mathrm{L} \Longleftrightarrow x_{i}=0$

Ham-Cycle

Theorem. HAM-CyCLE is NP-Complete.

- It is in NP.
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3 -SAT \leq_{P} HAM-Cycle.

Reduction has two main parts.

- Make a graph with 2^{n} Hamiltonian cycles, one per assignment
- Augment graph with clauses to invalidate assignments.

Reduction: Graph skeleton with clause constraints

Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

Reduction: Clause Gadgets

For each clause C_{ℓ} construct gadget to restrict possible truth assignments

- New node c_{ℓ}
- If $x_{i} \in C_{\ell}$
- Add edges $\left(v_{i, 3 \ell}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{i, 3 \ell+1}\right)$
- c_{ℓ} can be visited during L to R traversal of P_{i}
- If $\neg x_{i} \in C_{\ell}$
- Add edges $\left(v_{i, 3 \ell+1}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{i, 3 \ell}\right)$
- c_{ℓ} can be visited during R to L traversal of P_{i}

Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle

- If $x_{i}=1$ traverse P_{i} from $L \rightarrow R$, else $R \rightarrow L$
- Each C_{ℓ} is satisfied, so one path P_{i} is traversed in the correct direction to "splice" c_{ℓ} into our cycle
- The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:

- If cycle visits c_{ℓ} from row i, it will also leave to row i because of "buffer" nodes
- Therefore, ignoring clause nodes, cycle traverses each row completely from $L \rightarrow R$ or $R \rightarrow L$
- Set $x_{i}=1$ if P_{i} traversed $L \rightarrow R$, else $x_{i}=0$
- Every node c_{j} visited \Rightarrow every clause C_{j} is satisfied

Traveling Salesman

TSP. Given n cities and distance function $d(i, j)$, is there a tour that visits all cities with total distance less than D ?

Theorem. TSP is NP-Complete

- Clearly in NP.
- Reduction? From Ham-Cycle

Reduction from Ham-Cycle to TSP

Given HamCycle instance $G=(V, E)$ make TSP instance

- One city per vertex
- $d\left(v_{i}, v_{j}\right)=1$ if $\left(v_{i}, v_{j}\right) \in E$, else 2

Claim: there is a tour of distance $\leq n$ if and only if G has a Hamiltonian cycle

- A Hamiltonian cycle clearly gives a tour of length n
- A tour of length n must travel n hops of length 1 , which corresponds to a Hamiltonian cycle

Clicker Question 2

NP-Complete Problems

