



| Proof of Correctness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Traveling Salesman                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Given a satisfying assignment, construct Hamiltonian Cycle</li> <li>If x<sub>i</sub> = 1 traverse P<sub>i</sub> from L → R, else R → L.</li> <li>Each C<sub>ℓ</sub> is satisfied, so one path P<sub>i</sub> is traversed in the correct direction to "splice" c<sub>ℓ</sub> into our cycle</li> <li>The result is a Hamiltonian Cycle</li> <li>Given Hamiltonian cycle, construct satisfying assignment:</li> <li>If cycle visits c<sub>ℓ</sub> from row i, it will also leave to row i because of "buffer" nodes</li> <li>Therefore, ignoring clause nodes, cycle traverses each row completely from L → R or R → L</li> <li>Set x<sub>i</sub> = 1 if P<sub>i</sub> traversed L → R, else x<sub>i</sub> = 0</li> <li>Every node c<sub>j</sub> visited ⇒ every clause C<sub>j</sub> is satisfied</li> </ul> | <ul> <li>TSP. Given n cities and distance function d(i, j), is there a tour that visits all cities with total distance less than D?</li> <li>Theorem. TSP is NP-Complete</li> <li>Clearly in NP.</li> <li>Reduction? From HAM-CYCLE</li> </ul> |
| Reduction from HAM-CYCLE to TSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Нам-Ратн                                                                                                                                                                                                                                       |
| <ul> <li>Given HAMCYCLE instance G = (V, E) make TSP instance</li> <li>One city per vertex</li> <li>d(v<sub>i</sub>, v<sub>j</sub>) = 1 if (v<sub>i</sub>, v<sub>j</sub>) ∈ E, else 2</li> <li>Claim: there is a tour of distance ≤ n if and only if G has a Hamiltonian cycle</li> <li>A Hamiltonian cycle clearly gives a tour of length n</li> <li>A tour of length n must travel n hops of length 1, which corresponds to a Hamiltonian cycle</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | Similar to Hamiltonian Cycle, visit every vertex exactly once.<br><b>Theorem.</b> HAM-PATH is NP-Complete.<br>Two proofs.<br>Modify 3-SAT to HAM-CYCLE reduction.<br>Reduce from HAM-CYCLE directly.                                           |
| Clicker Question 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NP-Complete Problems                                                                                                                                                                                                                           |
| Suppose now I want to reduce HAM-PATH to HAM-CYCLE. Which<br>of the following statements is true?<br>A: Trivial: any cycle with all nodes is also a path with all nodes<br>B: HAM-PATH $\leq_P$ HAM-CYCLE since not all paths are cycles<br>C: HAM-PATH $\leq_P$ HAM-CYCLE since there are some graphs that<br>have a Hamiltonian path but no Hamiltonian cycle<br>D: None of the above                                                                                                                                                                                                                                                                                                                                                                                                                              | Circuit-SAT<br>3-SAT<br>Indept-Set<br>Vertex-Cover<br>Set-Cover                                                                                                                                                                                |