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Review

I P – class of problems with polytime algorithm.
I NP – class of problems with polytime certifier.
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Problem (X) Independent-Set
Instance (s) Graph G and number k
Algorithm (A) Try all subsets and check (but not poly-time)
Hint (t) Which nodes are in the answer?
Certifier (C) Are those nodes independent and size k?

NP-Complete Problems So Far

Theorem: IndependentSet, VertexCover, SetCover,
SAT, 3-SAT are all NP-Complete.
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Clicker Question 1

Which of the following statements is NOT true?

A: SAT ≤P 3-SAT

B: 3-SAT ≤P SAT

C: k-SAT ≤P SAT for all k ≥ 2

D: k-SAT is NP-complete for all k ≥ 2

Finding NP-Complete Problems

Want to prove problem X is NP-complete
I Check X ∈ NP.
I Choose known NP-complete problem Y .
I Prove Y ≤P X.
I Usually suffices to do single transformation sY → sX s.t.

I sX is Yes instance iff sY is Yes instance

Traveling Salesman Problem

I TSP. Given n cities and distance function d(i, j), is there a
tour that visits all cities with total distance less than D?
I Tour: ordering of cities i1, i2, . . . , in with i1 = 1

I Distance is
n−1∑

j=1
d(ij , ij+1) + d(in, 1)

I Applications: traveling salesperson, moving robotic arms
I Let’s prove a simpler problem is NP-complete, and then use it

to show TSP is NP-complete.



Hamiltonian Cycle Problem

I HamCycle – Hamiltonian Cycle. Given directed graph
G = (V, E), is there a cycle that visits each vertex exactly
once?
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I v1, v3, v2, v5, v4, v6 is a Hamiltonian Cycle

Ham-Cycle

Theorem. Ham-Cycle is NP-Complete.
I It is in NP.
I Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT ≤P Ham-Cycle.

Reduction has two main parts.
I Make a graph with 2n Hamiltonian cycles, one per assignment.
I Augment graph with clauses to invalidate assignments.

Reduction: Graph skeleton for truth assignments
476 Chapter 8 NP and Computational Intractability

P1

P2

P3

Hamiltonian cycles correspond to
the 2n possible truth assignments.

s

t

Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we
define edges from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to
vi+1,1 and to vi+1,b. We add two extra nodes s and t; we define edges from s
to v11 and v1b; from vn1 and vnb to t; and from t to s.

The construction up to this point is pictured in Figure 8.7. It’s important
to pause here and consider what the Hamiltonian cycles in our graph look like.
Since only one edge leaves t, we know that any Hamiltonian cycle C must use
the edge (t , s). After entering s, the cycle C can then traverse P1 either left to
right or right to left; regardless of what it does here, it can then traverse P2
either left to right or right to left; and so forth, until it finishes traversing Pn
and enters t. In other words, there are exactly 2n different Hamiltonian cycles,
and they correspond to the n independent choices of how to traverse each Pi.

Reduction: Graph skeleton with clause constraints478 Chapter 8 NP and Computational Intractability
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Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

the nodes immediately before and after cj in the cycle C are joined by an edge e
in G; thus, if we remove cj from the cycle and insert this edge e for each j, then
we obtain a Hamiltonian cycle C� on the subgraph G − {c1, . . . , ck}. This is our
original subgraph, before we added the clause nodes; as we noted above, any
Hamiltonian cycle in this subgraph must traverse each Pi fully in one direction
or the other. We thus use C� to define the following truth assignment for the
3-SAT instance. If C� traverses Pi left to right, then we set xi = 1; otherwise we
set xi = 0. Since the larger cycle C was able to visit each clause node cj, at least
one of the paths was traversed in the “correct” direction relative to the node
cj, and so the assignment we have defined satisfies all the clauses.

Reduction: Skeleton Construction

I n rows (bidirected paths) P1, . . . , Pn (one per variable)
I Row has 3m + 3 vertices, connected to neighbors in

forward/backward direction
I First and last vertex of row i connected to first and last of i + 1.
I Source s connected to first and last of row 1.
I First and last of row n connected to t.
I Edge (t, s)
I Skeleton has 2n possible Hamiltonian Cycles, corresponding to

truth assignments to x1, . . . , xn

I Traverse Pi L to R ⇐⇒ xi = 1
I Traverse Pi R to L ⇐⇒ xi = 0

Reduction: Clause Gadgets

For each clause C` construct gadget to restrict possible truth
assignments
I New node c`

I If xi ∈ C`

I Add edges (vi,3`, c`) and (c`, vi,3`+1)
I c` can be visited during L to R traversal of Pi

I If ¬xi ∈ C`

I Add edges (vi,3`+1, c`) and (c`, vi,3`)
I c` can be visited during R to L traversal of Pi



Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle
I If xi = 1 traverse Pi from L→ R, else R→ L.
I Each C` is satisfied, so one path Pi is traversed in the correct

direction to “splice” c` into our cycle
I The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:
I If cycle visits c` from row i, it will also leave to row i because

of “buffer” nodes
I Therefore, ignoring clause nodes, cycle traverses each row

completely from L→ R or R→ L
I Set xi = 1 if Pi traversed L→ R, else xi = 0
I Every node cj visited ⇒ every clause Cj is satisfied

Traveling Salesman

TSP. Given n cities and distance function d(i, j), is there a tour
that visits all cities with total distance less than D?

Theorem. TSP is NP-Complete
I Clearly in NP.
I Reduction? From Ham-Cycle

Reduction from Ham-Cycle to TSP

Given HamCycle instance G = (V, E) make TSP instance
I One city per vertex
I d(vi, vj) = 1 if (vi, vj) ∈ E, else 2

Claim: there is a tour of distance ≤ n if and only if G has a
Hamiltonian cycle
I A Hamiltonian cycle clearly gives a tour of length n
I A tour of length n must travel n hops of length 1, which

corresponds to a Hamiltonian cycle

Ham-Path

Similar to Hamiltonian Cycle, visit every vertex exactly once.

Theorem. Ham-Path is NP-Complete.

Two proofs.
I Modify 3-SAT to Ham-Cycle reduction.
I Reduce from Ham-Cycle directly.

Clicker Question 2

Suppose now I want to reduce Ham-Path to Ham-Cycle. Which
of the following statements is true?

A: Trivial: any cycle with all nodes is also a path with all nodes

B: Ham-Path �P Ham-Cycle since not all paths are cycles

C: Ham-Path �P Ham-Cycle since there are some graphs that
have a Hamiltonian path but no Hamiltonian cycle

D: None of the above
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