
COMPSCI 311: Introduction to Algorithms
Lecture 20: Intractability: More Reductions, NP

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Reduction Strategies

I Reduction by equivalence (Vertex Cover and Independent Set)

I Reduction to a more general case (Vertex Cover to Set Cover)

I Reduction by "gadgets": Satisfiability

P=NP, $1M, and Minesweeper ?

This problem is: This problem is: Unsolved

P vs NP Problem
Suppose that you are organizing housing

accommodations for a group of four hundred

university students. Space is limited and only one

hundred of the students will receive places in the

dormitory. To complicate matters, the Dean has

provided you with a list of pairs of incompatible

students, and requested that no pair from this list

appear in your final choice. This is an example of

what computer scientists call an NP-problem,

since it is easy to check if a given choice of one hundred students proposed by a coworker is satisfactory (i.e.,

no pair taken from your coworker's list also appears on the list from the Dean's office), however the task of

generating such a list from scratch seems to be so hard as to be completely impractical. Indeed, the total

number of ways of choosing one hundred students from the four hundred applicants is greater than the

number of atoms in the known universe! Thus no future civilization could ever hope to build a

supercomputer capable of solving the problem by brute force; that is, by checking every possible

combination of 100 students. However, this apparent difficulty may only reflect the lack of ingenuity of your

programmer. In fact, one of the outstanding problems in computer science is determining whether

questions exist whose answer can be quickly checked, but which require an impossibly long time to solve by

any direct procedure. Problems like the one listed above certainly seem to be of this kind, but so far no one

has managed to prove that any of them really are so hard as they appear, i.e., that there really is no feasible

way to generate an answer with the help of a computer. Stephen Cook and Leonid Levin formulated the P

(i.e., easy to find) versus NP (i.e., easy to check) problem independently in 1971.

Image credit: on the left, Stephen Cook by Jiří Janíček (cropped). CC BY-SA 3.0

Rules:

Rules for the Millennium
Prizes

Related Documents:

Official Problem
Description

Minesweeper

Related Links:

Lecture by Vijaya
Ramachandran

Cookies and Privacy

About

Events

News

© Clay Mathematics Institute

Contact

Enhancement and Partnership Program

Millennium Prize Problems

Publications

Home

 Search

Last update: 02-Nov-2018 10:59 am

ABOUT PROGRAMS MILLENNIUM PROBLEMS PEOPLE PUBLICATIONS EVENTS EUCLID

Source: Clay Mathematics Institute, claymath.org

What does Minesweeper have to do with this ??

More Reduction: Satisfiability

I Can we determine if a Boolean formula has a satisfying
assignment?

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x2 ∨ x̄3)

I Boolean variables: x1, . . . , xn

I Term: a variable or its negation. xi or x̄i

I Clause: a disjunction (“or”) of terms. C = x1 ∨ x̄2 ∨ x4
I Formula: a conjunction (“and”) of clauses. C1 ∧ C2 ∧ . . . ∧ Ck

I Assignment: assign 0/1 to each variable.
x1 = 1, x2 = 1, x3 = 1

I Satisfying assignment: makes all clauses evaluate to “true”.
x1 = 0, x2 = 0, x3 = 0

Solving Satisfiability
SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
x1, . . . , xn, does there exist a satisfying assignment?

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x2 ∨ x̄3)

Some simplification rules:

If xi is unit clause: xi ∧ (...) ∧ (...), xi must be true
If x̄j is unit clause, xj must be false

Propagation: if xi is true, all clauses with xi are true
and x̄i can be removed from all clauses

But, it no more simplifications, must still try both cases for xi

worst-case asymptotics still exponential (brute force is 2n)

SETH: Strong Exponential Time Hypothesis (more than P 6= NP):
SAT cannot be solved in subexponential time in the worst case.

Back to Minesweeper

Playing Minesweeper well means not taking needless risks

⇒ reasoning about where mines may be

⇒ solving Boolean constraints

Richard Kaye, Minesweeper is NP-complete!, Mathematical
Intelligencer, 2000

Playing the game

Does (2,6) have a mine?

ASE2003 – p. 3

slide credit: Richard Kaye

Playing the game

These must have mines

ASE2003 – p. 3

slide credit: Richard Kaye

A puzzle

If this is a mine the one next to it is clear. . .

ASE2003 – p. 4

slide credit: Richard Kaye

A puzzle

So. . .

ASE2003 – p. 4

slide credit: Richard Kaye

A puzzle

. . . which is impossible!

ASE2003 – p. 4

slide credit: Richard Kaye

A puzzle

Solved!

ASE2003 – p. 4

slide credit: Richard Kaye

Minesweeper and SAT

To play Minesweeper, one must solve SAT problems

Minesweep ≤P SAT

Does this mean Minesweeper is NP-Complete?

No! Every algorithmic problem can be expressed with Booleans

We need to reduce SAT to Minesweeper!

Can do it with a Boolean circuit version {Circuit-SAT}

Encoding Circuits with Minesweeper

Simplest circuit: a wire (propagates a value)

A wire

Minesweeper is complicated by the fact that
something in one part of the board can affect the

whole board.

ASE2003 – p. 10

Encoding Circuits with Minesweeper

A wire

Minesweeper is complicated by the fact that
something in one part of the board can affect the

whole board.

ASE2003 – p. 10

(values of cells have shifted)

Can do (more complicated): AND, OR, XOR, wire crossings, splits

Reduction by Gadgets: Satisfiability

SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
x1, . . . , xn, does there exist a satisfying assignment?

3-SAT – Same, but each Ci has exactly three terms

Claim: 3-SAT ≤P IndependentSet.

Reduction:
I Given 3-SAT instance Φ = 〈C1, . . . , Cm〉, we will construct an

independent set instance 〈G, m〉 such that G has an
independent set of size m iff Φ is satisfiable

I Return Yes if solveIS(〈G, m〉) = Yes

Reduction

I Idea: construct graph G where independent set will select one
term per clause to be true

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

I One node per term
I Edges between all terms in same clause (select at most one)
I Edges between a literal and all of its negations (consistent

truth assignment)

Correctness

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if G has an independent set of size m, then 〈C1, . . . , Cm〉 is
satisfiable
I Suppose S is an independent set of size m
I Assign variables so selected literals are true. Edges from terms

to negations ensure non-conflicting assignment.
I Set any remaining variables arbitrarily
I At most one term per clause is selected. Since m are selected,

every clause is satisfied.

Correctness

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

x̅1

x2 x3

x1

x̅2 x3

x̅1

x̅2 x̅3

Claim: if 〈C1, . . . , Cm〉 is satisfiable, then G has an independent
set of size m

I Consider any satsifying assignment of 〈C1, . . . , Cm〉
I Let S consist of one node per triangle corresponding to true

literal in that clause. Then |S| = m.
I For (u, v) within clause, at most one endpoint is selected
I For edge (xi, x̄i) between clauses, at most one endpoint is

selected, because xi = 1 or x̄i = 1, but not both
I Therefore S is an independent set

Reductions So Far

Partial map of problems we can use to solve others in polynomial
time, through transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

I Y X

means Y ≤P X.

Toward a Definition of NP

Remember our problem hierarchy:

P

NP

EXP

Let’s formally define NP.

Remember: exponential time means O(2nd) for some constant d.

P and NP

I P: Decision problems for which there is a polynomial time
algorithm.

I NP: Decision problems for which there is a polynomial time
certifier.

Intuition: A correct solution can be certified in polynomial time.

Solver vs. Certifier
Let X be a decision problem and s be problem instance (e.g.,
s = 〈G, k〉 for Independent Set)

Poly-time solver. Algorithm A(s) such that A(s) = Yes iff correct
answer is Yes, and running time polynomial time in |s|

A

s

yes/no

Instance

C

s t

yes/no

Instance Hint

Poly-time certifier. Algorithm C(s, t) such that for every instance s,
there is some t such that C(s, t) = Yes iff correct answer is Yes,
and running time is polynomial in |s|.
I t is the “certificate” or hint. Must also be polynomial-size in |s|

Certifier Example: Independent Set

Input s = 〈G, k〉.
Problem: Does G have an independent set of size at least k?
Idea: Certificate t = an independent set of size k

CertifyIS(〈G, k〉, t)
if |t| < k return No
for each edge e = (u, v) ∈ E do

if u ∈ t and v ∈ t return No
end for
Return Yes

Polynomial time? Yes, linear in |E|.

Example: Independent Set

I Independent Set ∈ P?
I Unknown. No known polynomial time algorithm.

I Independent Set ∈ NP?
I Yes. Easy to certify solution in polynomial time.

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate t = the satisfying assignment

Certify3SAT(〈Φ〉, t)
. Check if t makes Φ true

Takeaway

P

NP

EXP

I 3SAT and Independent Set are in NP, as are many other
problems that are hard to solve, but easy to certify!

P, NP, EXP

P

NP

EXP

I Claim: P ⊆ NP
I Claim: NP ⊆ EXP
I Both straightforward to prove, but not critical right now.

NP-Complete

P

NP

NP-
complete

I NP-complete = a problem Y ∈ NP with the property that
X ≤P Y for every problem X ∈ NP!

NP-Complete

CIRCUIT-SAT

SAT3-SAT VC SC IS....

I Cook-Levin Theorem: In 1971, Cook and Levin
independently showed that particular problems were
NP-Complete.

I We’ll look at Circuit-SAT as canonical NP-Complete
problem.

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with
some hard-coded inputs, is there a way to set remaining inputs so
the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier C(s, t) as a circuit
I If X ∈ NP, then X has a poly-time certifier C(s, t)

C

s t

yes/no

Instance Hint

I Construct a circuit where s is hard-coded, and circuit is
satisfiable iff ∃t that causes C(s, t) to output Yes

I Algorithm for Circuit-Sat implies an algorithm for X

A Circuit-SAT reduction
I Vertex Cover – Does G have VC of size at most k?

v1 v2

v3 v4

v1

v2

v3

v4 ∧

∨

¬ ∧

¬

2?

1?

0?

∨

∨

∨

∨

∧

∧

∧ Cover?

Back to 3-SAT

Claim: If Y is NP-complete and Y ≤P X, then X is NP-complete.

Theorem: 3-SAT is NP-Complete.
I In NP? Yes, check satisfying assignment in poly-time.
I Prove by reduction from Circuit-SAT.

Example.

i1

i2

1

∧

∨ ¬
∧ o

Reduction: Circuit-Sat ≤P 3-Sat
I One variable xv per circuit node v plus clauses to enforce

circuit computations

I Equality = equivalence (conjunction of two implications)

I An implication can be written as an “or” clause
I A⇒ B is the same as ¬A ∨B
I B can in turn be a disjunction

I Negation node: xv = ¬xu

I xu ⇒ ¬xv

I ¬xu ⇒ xv

I OR node: xv = xu ∨ xw

I xu ⇒ xv

I xw ⇒ xv

I xv ⇒ xu ∨ xw

I AND node: xv = xu ∧ xw

I xv ⇒ xu

I xv ⇒ xw

I ¬xv ⇒ ¬xu ∨ ¬xw

Reduction: Circuit-Sat ≤P 3-Sat

I Clause C = xv for input bits v fixed to one
I Clause C = ¬xv for input bits v fixed to zero
I Clause C = xo for output bit
I This formula satisfiable iff circuit is satisfiable.
I But it has clauses of size 1 and 2. Convert to 3-SAT formula

by introducing two new variables and clauses that force them
to be equal to zero.

