

Reduction Strategies

- Reduction by equivalence (Vertex Cover and Independent Set)
- Reduction to a more general case (Vertex Cover to Set Cover)
- Reduction by "gadgets": Satisfiability
$\mathrm{P}=\mathrm{NP}, \$ 1 \mathrm{M}$, and Minesweeper ?

CMI about programs miliennumproblems people publucations events euclid

Pvs NP Problem

Source: Clay Mathematics Institute, claymath.org
What does Minesweeper have to do with this ??

More Reduction: Satisfiability

- Can we determine if a Boolean formula has a satisfying assignment?

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)
$$

- Boolean variables: x_{1}, \ldots, x_{n}
- Term: a variable or its negation. x_{i} or \bar{x}_{i}
- Clause: a disjunction ("or") of terms. $C=x_{1} \vee \bar{x}_{2} \vee x_{4}$
- Formula: a conjunction ("and") of clauses. $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}$
- Assignment: assign $0 / 1$ to each variable. $x_{1}=1, x_{2}=1, x_{3}=1$
- Satisfying assignment: makes all clauses evaluate to "true". $x_{1}=0, x_{2}=0, x_{3}=0$

Solving Satisfiability

SAT - Given boolean formula $C_{1} \wedge C_{2} \ldots \wedge C_{m}$ over variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)
$$

Some simplification rules:
If x_{i} is unit clause: $x_{i} \wedge(\ldots) \wedge(\ldots), x_{i}$ must be true If $\overline{x_{j}}$ is unit clause, x_{j} must be false

Propagation: if x_{i} is true, all clauses with x_{i} are true and \bar{x}_{i} can be removed from all clauses

But, it no more simplifications, must still try both cases for x_{i} worst-case asymptotics still exponential (brute force is 2^{n})

SETH: Strong Exponential Time Hypothesis (more than $P \neq N P$):
SAT cannot be solved in subexponential time in the worst case

Back to Minesweeper

Playing Minesweeper well means not taking needless risks
\Rightarrow reasoning about where mines may be
\Rightarrow solving Boolean constraints

Richard Kaye, Minesweeper is NP-complete!, Mathematical Intelligencer, 2000

Playing the game

Does $(2,6)$ have a mine?

Playing the game

These must have mines
${ }^{\text {Asseran }-\mathrm{pa}}{ }^{-}$ slide credit: Richard Kaye

A puzzle

So...

- ${ }_{\text {ASE20003 }}$ - p .4
slide credit: Richard Kaye

A puzzle

Solved!

Minesweeper and SAT

To play Minesweeper, one must solve SAT problems

Minesweep \leq_{P} SAT
Does this mean Minesweeper is NP-Complete?

No! Every algorithmic problem can be expressed with Booleans
We need to reduce SAT to Minesweeper!
Can do it with a Boolean circuit version \{Circuit-SAT\}

Encoding Circuits with Minesweeper

Simplest circuit: a wire (propagates a value)

A wire

Minesweeper is complicated by the fact that something in one part of the board can affect the whole board.

Reduction by Gadgets: Satisfiability

SAT - Given boolean formula $C_{1} \wedge C_{2} \ldots \wedge C_{m}$ over variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?

3-SAT - Same, but each C_{i} has exactly three terms

Claim: 3 -SAT \leq_{P} IndependentSet.

Reduction:

- Given 3-SAT instance $\Phi=\left\langle C_{1}, \ldots, C_{m}\right\rangle$, we will construct an independent set instance $\langle G, m\rangle$ such that G has an independent set of size m iff Φ is satisfiable
- Return Yes if solveIS $(\langle G, m\rangle)=$ Yes
(values of cells have shifted)
Can do (more complicated): AND, OR, XOR, wire crossings, splits

Reduction

- Idea: construct graph G where independent set will select one term per clause to be true

$$
\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- One node per term
- Edges between all terms in same clause (select at most one)
- Edges between a literal and all of its negations (consistent truth assignment)

Correctness

$$
\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

Claim: if G has an independent set of size m, then $\left\langle C_{1}, \ldots, C_{m}\right\rangle$ is satisfiable

- Suppose S is an independent set of size m
- Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- Set any remaining variables arbitrarily
- At most one term per clause is selected. Since m are selected, every clause is satisfied.

Correctness

Claim: if $\left\langle C_{1}, \ldots, C_{m}\right\rangle$ is satisfiable, then G has an independent set of size m

- Consider any satsifying assignment of $\left\langle C_{1}, \ldots, C_{m}\right\rangle$
- Let S consist of one node per triangle corresponding to true literal in that clause. Then $|S|=m$
- For (u, v) within clause, at most one endpoint is selected
- For edge $\left(x_{i}, \bar{x}_{i}\right)$ between clauses, at most one endpoint is selected, because $x_{i}=1$ or $\bar{x}_{i}=1$, but not both
- Therefore S is an independent set

Toward a Definition of NP

Remember our problem hierarchy:

Let's formally define NP.
Remember: exponential time means $O\left(2^{n^{d}}\right)$ for some constant d.

Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g.
$s=\langle G, k\rangle$ for Independent SET)

Poly-time solver. Algorithm $A(s)$ such that $A(s)=$ YES iff correct answer is YES, and running time polynomial time in $|s|$

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s, there is some t such that $C(s, t)=$ Yes iff correct answer is Yes, and running time is polynomial in $|s|$.

- t is the "certificate" or hint. Must also be polynomial-size in $|s|$

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

- P: Decision problems for which there is a polynomial time algorithm.
- NP: Decision problems for which there is a polynomial time certifier.

Intuition: A correct solution can be certified in polynomial time.

Certifier Example: Independent Set

Input $s=\langle G, k\rangle$.
Problem: Does G have an independent set of size at least k ?
Idea: Certificate $t=$ an independent set of size k

$$
\begin{aligned}
& \text { CertifyIS(}\langle G, k\rangle, t) \\
& \text { if }|t|<k \text { return No } \\
& \text { for each edge } e=(u, v) \in E \text { do } \\
& \text { if } u \in t \text { and } v \in t \text { return No } \\
& \text { end for } \\
& \text { Return YeS }
\end{aligned}
$$

Polynomial time? Yes, linear in $|E|$.

Example: Independent Set

- Independent $\operatorname{Set} \in \mathrm{P}$?
- Unknown. No known polynomial time algorithm.
- Independent Set \in NP?
- Yes. Easy to certify solution in polynomial time

NP-Complete

- NP-complete $=$ a problem $Y \in$ NP with the property that $X \leq_{P} Y$ for every problem $X \in$ NP!

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate $t=$ the satisfying assignment

Certify3SAT $(\langle\Phi\rangle, t)$
\triangleright Check if t makes Φ true

P, NP, EXP

- Claim: $\mathrm{P} \subseteq \mathrm{NP}$
- Claim: NP \subseteq EXP
- Both straightforward to prove, but not critical right now.

NP-Complete

- Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We'll look at Circuit-SAT as canonical NP-Complete problem.

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1 ?

Satisfiable? Yes. Set inputs: 1, 1, 0.

A Circuit-SAT reduction

- Vertex Cover - Does G have VC of size at most k ?

Reduction: Circuit-Sat $\leq_{P} 3$-Sat

- One variable x_{v} per circuit node v plus clauses to enforce circuit computations
- Equality = equivalence (conjunction of two implications)
- An implication can be written as an "or" clause
- $A \Rightarrow B$ is the same as $\neg A \vee B$
- B can in turn be a disjunction
- Negation node: $x_{v}=\neg x_{u}$
- $x_{u} \Rightarrow \neg x_{v}$
- $\neg x_{u} \Rightarrow x_{v}$
- AND node: $x_{v}=x_{u} \wedge x_{w}$
- $x_{v} \Rightarrow x_{u}$
- $x_{v} \Rightarrow x_{w}$
- $\neg x_{v} \Rightarrow \neg x_{u} \vee \neg x_{w}$
- $x_{u} \Rightarrow x_{v}$
$x_{u} \Rightarrow x_{v}$
- $x_{v} \Rightarrow x_{u} \vee x_{w}$

Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- If $X \in \mathrm{NP}$, then X has a poly-time certifier $C(s, t)$

- Construct a circuit where s is hard-coded, and circuit is satisfiable iff $\exists t$ that causes $C(s, t)$ to output Yes
- Algorithm for Circuit-Sat implies an algorithm for X

Back to 3-SAT

Claim: If Y is NP-complete and $Y \leq_{P} X$, then X is NP-complete

Theorem: 3-SAT is NP-Complete.

- In NP? Yes, check satisfying assignment in poly-time
- Prove by reduction from Circuit-SAT.

Example.

- Clause $C=x_{v}$ for input bits v fixed to one
- Clause $C=\neg x_{v}$ for input bits v fixed to zero
- Clause $C=x_{o}$ for output bit
- This formula satisfiable iff circuit is satisfiable.
- But it has clauses of size 1 and 2. Convert to 3-SAT formula by introducing two new variables and clauses that force them to be equal to zero.

