
COMPSCI 311 Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor

September 27, 2018

Algorithm Design

I Formulate the problem precisely

I Design an algorithm to solve the problem

I Prove the algorithm is correct

I Analyze the algorithm’s running time

Big-O: Motivation

What is the running time of this algorithm?
How many “primitive steps” are executed for an input of size n?

sum = 0
for i= 1 to n do

for j= 1 to n do
sum += A[i]*A[j]

end for
end for

The running time is
T (n) =? · n2+? · n+? .

What are the coefficients?

For large values of n, T (n) is less than some multiple of n2.
We say T (n) is O(n2) and typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function T (n) is O(f(n)) (read: “is order f(n)”)
if there exist constants c ≥ 0 and n0 ≥ 0 such that

T (n) ≤ cf(n) for all n ≥ n0

We say that f is an asymptotic upper bound for T .

Examples:
I If T (n) = n2 + 1000000n then T (n) is O(n2)

I If T (n) = n3 + n logn then T (n) is O(n3)

I If T (n) = 2
√

log n then T (n) is O(n)

 13

Let f(n) = 3n2 + 17 n log2 n + 1000. Which of the following are true?

A. f(n) is O(n2).  

B. f(n) is O(n3).  

C. Both A and B.  

D. Neither A nor B.

Analysis of algorithms: quiz 1

choose c = 1020, n0 = 1

choose c = 1020, n0 = 1

slide credit: Kevin Wayne / Pearson

Big-O: What it Is and Isn’t

I Is: a way to categorize growth rate of (non-negative) functions
relative to other functions.

I Is not: “the running time of my function”
(just an upper bound for growth rate, may not be tight)

Correct usage:
I The running time of my algorithm in input of size n is T (n).

Statement about algorithm only.
I T (n) is O(n3). Statement about the function T (n) only.
I The running time of my algorithm is O(n3).

About algorithm and T (n).

Incorrect usage:
I O(n3) is the running time of my algorithm

(think of O(n3) as a set. Or say in words: “order of n3”)

Properties of Big-O Notation

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Proof: we know from the definition that
I f(n) ≤ cg(n) for all n ≥ n0
I g(n) ≤ c′h(n) for all n ≥ n′0

Therefore

f(n) ≤ cg(n) if n ≥ n0

≤ c · c′h(n) if n ≥ n0 and n ≥ n′0
= cc′︸︷︷︸

c′′

h(n) if n ≥ max{n0, n
′
0}︸ ︷︷ ︸

n′′
0

Know how to do proofs using Big-O definition.

Properties of Big-O Notation

Claims (Additivity):
I If f is O(h) and g is O(h), then f + g is O(h).

I If f1, f2, . . . , fk are each O(h), then f1 + f2 + . . .+ fk is O(h).

I If f is O(g), then f + g is O(g).

We’ll go through a couple of examples. . .

Consequences of Additivity

I OK to drop lower order terms. E.g., if

f(n) = 4.1n3 + 23n+ n logn

then f(n) is O(n3)

I Polynomials: Only highest degree term matters. E.g., if

f(n) = a0 + a1n+ a2n
2 + . . .+ adn

d, ad > 0

then f(n) is O(nd)

Other Useful Facts: Log vs. Poly vs. Exp

Fact: logb(n) is O(nd) for all b, d > 0

All polynomials grow faster than logarithm of any base

Fact: nd is O(rn) when r > 1

Exponential functions grow faster than polynomials

Exercise: Prove these facts!

Logarithm review
Definition: logb(a) is the unique number c such that bc = a

Informally: the number of times you can divide a into b parts until
each part has size one

Properties:
I Log of product → sum of logs

I log(xy) = log x+ log y
I log(xk) = k log x

I logb(·) is inverse of b(·)
I logb(bn) = n
I blogb(n) = n

I loga n = logab · logbn (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base.
Assume log2 if not specified.

Big-O comparison

Which grows faster?
n(logn)3 vs. n4/3

simplifies to
(logn)3 vs. n1/3

simplifies to
logn vs. n1/9

I We know logn is O(nd) for all d
I ⇒ logn is O(n1/9)
I ⇒ n(logn)3 is O(n4/3)

Apply transformations (monotone, invertible) to both functions.
Try taking log.

Exponential time

An algorithm is exponential time if it is O(2nk) for some k > 0

Useful fact: (Stirling’s approximation)

n! ∼
√

2πn
(
n

e

)n

(ratio tends to 1)

Exercise: What can you claim from here for big-O (and later big-Θ)?

 48

Which is an equivalent definition of exponential time?

A. O(2n)  

B. O(2cn) for some constant c > 0.  

C. Both A and B.  

D. Neither A nor B.

Analysis of algorithms: quiz 4

doesn’t include 3n

includes 3n but doesn’t include n! = 2Θ(n log n)

slide credit: Kevin Wayne / Pearson

Big-Ω Motivation

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Fact: run time is O(n3)

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time.
What is wrong?

More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

What is the running time of sum-product?

Easy to see it is O(n2). Could it be better? O(n)?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function T (n) is Ω(f(n)) if there exist constants
c ≥ 0 and n0 ≥ 0 such that

T (n) ≥ cf(n) for all n ≥ n0

f is an asymptotic lower bound for T

 17

Which is an equivalent definition of big Omega notation?

A. f(n) is Ω(g(n)) iff g (n) is O(f(n)).  

B. f(n) is Ω(g(n)) iff there exist constants c > 0 such that f(n) ≥ c · g(n) ≥ 0  
for infinitely many n.  

C. Both A and B.  

D. Neither A nor B.

Analysis of algorithms: quiz 2

slide credit: Kevin Wayne / Pearson

Big-Ω

Exercise: let T (n) be the running time of sum-product.
Show that T (n) is Ω(n2)

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

Exercise: solution

Hard way
I Count exactly how many times the loop executes

1 + 2 + . . .+ n = n(n+ 1)
2 = Ω(n2)

Easy way
I Ignore all loop executions where i > n/2 or j < n/2
I The inner statement executes at least (n/2)2 = Ω(n2) times

Big-Θ

Definition: the function T (n) is Θ(f(n)) if there exist positive
constants c1, c2 and n0 such that

0 ≤ c1f(n) ≤ T (n) ≤ c2f(n) for all n ≥ n0

f is an asymptotically tight bound of T

Which is an equivalent definition of big Theta notation?

A. f(n) is Θ(g(n)) iff f(n) is both O(g (n)) and Ω(g (n)).  

B. f(n) is Θ(g(n)) iff for some constant 0 < c < ∞. 

C. Both A and B.  

D. Neither A nor B.

 20

Analysis of algorithms: quiz 3

lim
n��

f(n)

g(n)
= c > 0

f(n) =

�
2n B7 n Bb 2p2M
3n B7 n Bb Q//

g(n) = n

f(n) is O(n) but limit does not exist

counterexample

slide credit: Kevin Wayne / Pearson

Big-Θ

Equivalent Definition: the function T (n) is Θ(f(n)) if it is both
O(f(n)) and Ω(f(n)).

f is an asymptotically tight bound of T

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Answer: foo is Θ(n2) and bar is Θ(n3).
They do not have the same asymptotic running time.

Additivity Revisited

Suppose f and g are two (non-negative) functions and f is O(g)

Old version: Then f + g is O(g)

New version: Then f + g is Θ(g)

Example:
n2
︸︷︷︸

g

+ 42n+ n logn︸ ︷︷ ︸
f

is Θ(n2)

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?
I Mathematical: describes the algorithm. Avoids hard-to-control

experimental factors (CPU, programming language, quality of
implementation), while still being predictive.

I Worst-case: just works. (“average case” appealing, but hard to
analyze)

I Function of input size: allows predictions. What will happen on
a new input?

Efficiency

When is an algorithm efficient?

Stable Matching Brute force: Ω(n!)
Propose-and-Reject?: O(n2)

We must have done something clever

Question: Is it Ω(n2) ?

Polynomial Time

Definition: an algorithm runs in polynomial time if its running time
is O(nd) for some constant d

Polynomial Time: Examples

These are polynomial time:

f1(n) = n
f2(n) = 4n+ 100
f3(n) = n log(n) + 2n+ 20
f4(n) = 0.01n2

f5(n) = n2

f6(n) = 20n2 + 2n+ 3

Not polynomial time:

f7(n) = 2n

f8(n) = 3n

f9(n) = n!

Why Polynomial Time ?

Why is this a good definition of efficiency?

I Matches practice: almost all practically efficient algorithms
have this property.

I Usually distinguishes a clever algorithm from a “brute force”
approach.

I Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.

