

Properties of Big-O Notation	Properties of Big-O Notation
Claim (Transitivity) : If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.	
Proof : we know from the definition that	Claims (Additivity):
▶ $f(n) \le cg(n)$ for all $n \ge n_0$ ▶ $g(n) \le c'h(n)$ for all $n \ge n'_0$	▶ If f is $O(h)$ and g is $O(h)$, then $f + g$ is $O(h)$.
Therefore	▶ If f_1, f_2, \ldots, f_k are each $O(h)$, then $f_1 + f_2 + \ldots + f_k$ is $O(h)$.
$\begin{split} f(n) &\leq cg(n) & \text{if } n \geq n_0 \\ &\leq c \cdot c'h(n) & \text{if } n \geq n_0 \text{ and } n \geq n'_0 \\ &= \underbrace{cc'}_{c''} h(n) & \text{if } n \geq \underbrace{\max\{n_0, n'_0\}}_{n''_0} \end{split}$	► If f is O(g), then f + g is O(g). We'll go through a couple of examples
Know how to do proofs using Big-O definition.	
Consequences of Additivity	Other Useful Facts: Log vs. Poly vs. Exp
 ▶ OK to drop lower order terms. E.g., if f(n) = 4.1n³ + 23n + n log n then f(n) is O(n³) ▶ Polynomials: Only highest degree term matters. E.g., if f(n) = a₀ + a₁n + a₂n² + + a_dn^d, a_d > 0 then f(n) is O(n^d) 	Fact: $\log_b(n)$ is $O(n^d)$ for all $b, d > 0$ All polynomials grow faster than logarithm of any base Fact: n^d is $O(r^n)$ when $r > 1$ Exponential functions grow faster than polynomials Exercise: Prove these facts!
Logarithm review	Big-O comparison
Definition : $\log_b(a)$ is the unique number c such that $b^c = a$	
Informally: the number of times you can divide a into b parts until each part has size one	Which grows faster? $n(\log n)^3$ vs. $n^{4/3}$
Properties:	simplifies to $(\log n)^3$ vs. $n^{1/3}$
► Log of product \rightarrow sum of logs ► $\log(xy) = \log x + \log y$ ► $\log(x^k) = k \log x$	simplifies to $\log n$ vs. $n^{1/9}$
▶ $\log_b(\cdot)$ is inverse of $b^{(\cdot)}$ ▶ $\log_b(b^n) = n$ ▶ $b^{\log_b(n)} = n$	$\blacktriangleright \text{ We know } \log n \text{ is } O(n^d) \text{ for all } d$ $\blacktriangleright \Rightarrow \log n \text{ is } O(n^{1/9})$ $\triangleright \Rightarrow n(\log n)^3 \text{ is } O(n^{4/3})$
	Apply transformations (manatons, invertible) to both functions

Big- Ω	Exercise: solution
Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$ Algorithm sum-product sum = 0 for $i=1$ to n do for $j=i$ to n do sum $+=A[i]^*A[j]$ end for end for	Hard way • Count exactly how many times the loop executes $1+2+\ldots+n=\frac{n(n+1)}{2}=\Omega(n^2)$ Easy way • Ignore all loop executions where $i>n/2$ or $j< n/2$ • The inner statement executes at least $(n/2)^2=\Omega(n^2)$ times
Big-O	Analysis of algorithms: quiz 3
Definition: the function $T(n)$ is $\Theta(f(n))$ if there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 f(n) \le T(n) \le c_2 f(n)$ for all $n \ge n_0$ f is an asymptotically tight bound of T	Which is an equivalent definition of big Theta notation? A. $f(n)$ is $\Theta(g(n))$ iff $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$. B. $f(n)$ is $\Theta(g(n))$ iff $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some constant $0 < c < \infty$. C. Both A and B. D. Neither A nor B.
$Big ext{-}\Theta$	$Big ext{-}\Theta$ example
Equivalent Definition : the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$. f is an asymptotically tight bound of T	How do we correctly compare the running time of these algorithms? Algorithm bar Algorithm foo for $i = 1$ to n do for $j = 1$ to n do for $j = 1$ to n do for $j = 1$ to n do for $k = 1$ to n do for end for end for end for end for end for for i for for i for for i for

Additivity Revisited	Running Time Analysis
Suppose f and g are two (non-negative) functions and f is $O(g)$ Old version: Then $f + g$ is $O(g)$ New version: Then $f + g$ is $\Theta(g)$ Example: $\underbrace{n^2}_g + \underbrace{42n + n \log n}_f \text{ is } \Theta(n^2)$	 Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices? Mathematical: describes the <i>algorithm</i>. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive. Worst-case: just works. ("average case" appealing, but hard to analyze) Function of input size: allows predictions. What will happen on a new input?
Efficiency	Polynomial Time
When is an algorithm efficient? Stable Matching Brute force: $\Omega(n!)$ Propose-and-Reject?: $O(n^2)$ We must have done something clever Question: Is it $\Omega(n^2)$?	Definition : an algorithm runs in polynomial time if its running time is $O(n^d)$ for some constant d
Polynomial Time: Examples	Why Polynomial Time ?
These are polynomial time: $f_1(n) = n$ $f_2(n) = 4n + 100$ $f_3(n) = n \log(n) + 2n + 20$ $f_4(n) = 0.01n^2$ $f_5(n) = n^2$ $f_6(n) = 20n^2 + 2n + 3$ Not polynomial time: $f_7(n) = 2^n$ $f_8(n) = 3^n$ $f_9(n) = n!$	 Why is this a good definition of efficiency? Matches practice: almost all practically efficient algorithms have this property. Usually distinguishes a clever algorithm from a "brute force" approach. Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.