COMPSCI 311 Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon, Akshay Krishnamurthy, Andrew McGregor
September 27, 2018

Big-O: Motivation

What is the running time of this algorithm?
How many "primitive steps" are executed for an input of size n ?

```
sum \(=0\)
for \(i=1\) to \(n\) do
    for \(j=1\) to \(n\) do
        sum \(+=A[i]^{*} A[j]\)
    end for
end for
```

The running time is

$$
T(n)=? \cdot n^{2}+? \cdot n+?
$$

What are the coefficients?
For large values of $n, T(n)$ is less than some multiple of n^{2}.
We say $T(n)$ is $O\left(n^{2}\right)$ and typically don't care about other terms.

Analysis of algorithms: quiz 1

Let $f(n)=3 n^{2}+17 n \log _{2} n+1000$. Which of the following are true?
A. $f(n)$ is $O\left(n^{2}\right)$.
B. $f(n)$ is $O\left(n^{3}\right)$.
C. Both A and B.
D. Neither A nor B.

Algorithm Design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm's running time

Big-O: Formal Definition

Definition: The function $T(n)$ is $O(f(n))$ (read: "is order $f(n)$ ") if there exist constants $c \geq 0$ and $n_{0} \geq 0$ such that

$$
T(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

We say that f is an asymptotic upper bound for T.

Examples:

- If $T(n)=n^{2}+1000000 n$ then $T(n)$ is $O\left(n^{2}\right)$
- If $T(n)=n^{3}+n \log n$ then $T(n)$ is $O\left(n^{3}\right)$
- If $T(n)=2^{\sqrt{\log n}}$ then $T(n)$ is $O(n)$

Big-O: What it Is and Isn't

- Is: a way to categorize growth rate of (non-negative) functions relative to other functions.
- Is not: "the running time of my function" (just an upper bound for growth rate, may not be tight)

Correct usage:

- The running time of my algorithm in input of size n is $T(n)$. Statement about algorithm only.
- $T(n)$ is $O\left(n^{3}\right)$. Statement about the function $T(n)$ only.
- The running time of my algorithm is $O\left(n^{3}\right)$.

About algorithm and $T(n)$.
Incorrect usage:

- $O\left(n^{3}\right)$ is the running time of my algorithm (think of $O\left(n^{3}\right)$ as a set. Or say in words: "order of $n^{3 "}$)

Properties of Big-O Notation

Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

Proof: we know from the definition that

- $f(n) \leq c g(n)$ for all $n \geq n_{0}$
- $g(n) \leq c^{\prime} h(n)$ for all $n \geq n_{0}^{\prime}$

Therefore

$$
\begin{array}{rlr}
f(n) & \leq c g(n) & \text { if } n \geq n_{0} \\
& \leq c \cdot c^{\prime} h(n) \quad \text { if } n \geq n_{0} \text { and } n \geq n_{0}^{\prime} \\
& =\underbrace{c c^{\prime}}_{c^{\prime \prime}} h(n) \quad \text { if } n \geq \underbrace{\max \left\{n_{0}, n_{0}^{\prime}\right\}}_{n_{0}^{\prime \prime}}
\end{array}
$$

Know how to do proofs using Big-O definition.

Consequences of Additivity

- OK to drop lower order terms. E.g., if

$$
f(n)=4.1 n^{3}+23 n+n \log n
$$

then $f(n)$ is $O\left(n^{3}\right)$

- Polynomials: Only highest degree term matters. E.g., if

$$
f(n)=a_{0}+a_{1} n+a_{2} n^{2}+\ldots+a_{d} n^{d}, \quad a_{d}>0
$$

then $f(n)$ is $O\left(n^{d}\right)$

Logarithm review

Definition: $\log _{b}(a)$ is the unique number c such that $b^{c}=a$
Informally: the number of times you can divide a into b parts until each part has size one

Properties:

- Log of product \rightarrow sum of logs
- $\log (x y)=\log x+\log y$
- $\log \left(x^{k}\right)=k \log x$
- $\log _{b}(\cdot)$ is inverse of $b^{(\cdot)}$
- $\log _{b}\left(b^{n}\right)=n$
- $b^{\log _{b}(n)}=n$
- $\log _{a} n=\log _{a} b \cdot \log _{b} n$ (logs in any two bases are proportional)

When using big-O, it's OK not to specify base.
Assume $\log _{2}$ if not specified.

Properties of Big-O Notation

Claims (Additivity):

- If f is $O(h)$ and g is $O(h)$, then $f+g$ is $O(h)$.
- If $f_{1}, f_{2}, \ldots, f_{k}$ are each $O(h)$, then $f_{1}+f_{2}+\ldots+f_{k}$ is $O(h)$
- If f is $O(g)$, then $f+g$ is $O(g)$.

We'll go through a couple of examples...

Fact: $\log _{b}(n)$ is $O\left(n^{d}\right)$ for all $b, d>0$
All polynomials grow faster than logarithm of any base

Fact: n^{d} is $O\left(r^{n}\right)$ when $r>1$
Exponential functions grow faster than polynomials

Exercise: Prove these facts!

Big-O comparison

Which grows faster?

$$
n(\log n)^{3} \quad \text { vs. } \quad n^{4 / 3}
$$

simplifies to

$$
(\log n)^{3} \quad \text { vs. } \quad n^{1 / 3}
$$

simplifies to

$$
\log n \quad \text { vs. } \quad n^{1 / 9}
$$

- We know $\log n$ is $O\left(n^{d}\right)$ for all d
- $\Rightarrow \log n$ is $O\left(n^{1 / 9}\right)$
- $\Rightarrow n(\log n)^{3}$ is $O\left(n^{4 / 3}\right)$

Apply transformations (monotone, invertible) to both functions. Try taking log.

Exponential time

An algorithm is exponential time if it is $O\left(2^{n^{k}}\right)$ for some $k>0$

Useful fact: (Stirling's approximation)

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad(\text { ratio tends to } 1)
$$

Exercise: What can you claim from here for big-O (and later big- Θ)?

Analysis of algorithms: quiz 4

Which is an equivalent definition of exponential time?
A. $O\left(2^{n}\right)$
B. $\quad O\left(2^{c n}\right)$ for some constant $c>0$.
C. Both A and B.
D. Neither A nor B.

Big- Ω Motivation

Algorithm foo
for $i=1$ to n do
for $j=1$ to n do
do something...
end for
end for

Fact: run time is $O\left(n^{3}\right)$

> Algorithm bar for $i=1$ to n do for $j=1$ to n do for $k=1$ to n do do something else.. end for end for end for

Fact: run time is $O\left(n^{3}\right)$

Conclusion: foo and bar have the same asymptotic running time. What is wrong?

More Big- Ω Motivation

Algorithm sum-product
sum $=0$
for $i=1$ to n do
for $j=i$ to n do
sum $+=A[i]^{*} A[j]$
end for
end for
What is the running time of sum-product?
Easy to see it is $O\left(n^{2}\right)$. Could it be better? $O(n)$?

Big- Ω

Informally: T grows at least as fast as f

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c \geq 0$ and $n_{0} \geq 0$ such that

$$
T(n) \geq c f(n) \text { for all } n \geq n_{0}
$$

f is an asymptotic lower bound for T

Analysis of algorithms: quiz 2

Which is an equivalent definition of big Omega notation?
A. $\quad f(n)$ is $\Omega(g(n))$ iff $g(n)$ is $O(f(n))$.
B. $\quad f(n)$ is $\Omega(g(n))$ iff there exist constants $c>0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for infinitely many n.
C. Both A and B.
D. Neither A nor B.

Big- Ω
Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega\left(n^{2}\right)$
Algorithm sum-product
sum $=0$
for $i=1$ to n do
for $j=i$ to n do
sum $+=A[i]^{*} A[j]$
end for
end for

Big- Θ

Definition: the function $T(n)$ is $\Theta(f(n))$ if there exist positive constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} f(n) \leq T(n) \leq c_{2} f(n) \text { for all } n \geq n_{0}
$$

f is an asymptotically tight bound of T

Exercise: solution

Hard way

- Count exactly how many times the loop executes

$$
1+2+\ldots+n=\frac{n(n+1)}{2}=\Omega\left(n^{2}\right)
$$

Easy way

- Ignore all loop executions where $i>n / 2$ or $j<n / 2$
- The inner statement executes at least $(n / 2)^{2}=\Omega\left(n^{2}\right)$ times

Analysis of algorithms: quiz 3

Which is an equivalent definition of big Theta notation?

A. $f(n)$ is $\Theta(g(n))$ iff $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$.
B. $\quad f(n)$ is $\Theta(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant $0<c<\infty$.
C. Both A and B.
D. Neither A nor B.

Big- -

Equivalent Definition: the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$.
f is an asymptotically tight bound of T

Big- Θ example

How do we correctly compare the running time of these algorithms?

	Algorithm bar
Algorithm foo	for $i=1$ to n do
for $i=1$ to n do	for $j=1$ to n do
for $j=1$ to n do	for $k=1$ to n do
do something...	do something else..
end for	end for
end for	end for

Answer: foo is $\Theta\left(n^{2}\right)$ and bar is $\Theta\left(n^{3}\right)$
They do not have the same asymptotic running time.
Additivity Revisited
Suppose f and g are two (non-negative) functions and f is $O(g)$
Old version: Then $f+g$ is $O(g)$
New version: Then $f+g$ is $\Theta(g)$
Example:

$$
\underbrace{n^{2}}_{g}+\underbrace{42 n+n \log n}_{f} \text { is } \Theta\left(n^{2}\right)
$$

Efficiency
When is an algorithm efficient?
Stable Matching Brute force: $\Omega(n!)$
Propose-and-Reject?: $O\left(n^{2}\right)$
We must have done something clever
Question: Is it $\Omega\left(n^{2}\right)$?

Polynomial Time: Examples

These are polynomial time:
$f_{1}(n)=n$
$f_{2}(n)=4 n+100$
$f_{3}(n)=n \log (n)+2 n+20$
$f_{4}(n)=0.01 n^{2}$
$f_{5}(n)=n^{2}$
$f_{6}(n)=20 n^{2}+2 n+3$
Not polynomial time:
$f_{7}(n)=2^{n}$
$f_{8}(n)=3^{n}$
$f_{9}(n)=n!$

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices?

- Mathematical: describes the algorithm. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive.
- Worst-case: just works. ("average case" appealing, but hard to analyze)
- Function of input size: allows predictions. What will happen on a new input?

Polynomial Time

Definition: an algorithm runs in polynomial time if its running time is $O\left(n^{d}\right)$ for some constant d

Why Polynomial Time ?

Why is this a good definition of efficiency?

- Matches practice: almost all practically efficient algorithms have this property.
- Usually distinguishes a clever algorithm from a "brute force" approach.
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

