
COMPSCI 311: Introduction to Algorithms
Lecture 19: Intractability: Polynomial-Time Reductions

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Algorithm Design

I Formulate the problem precisely
I Design an algorithm
I Prove correctness
I Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Graph Searches / Network Design

I Input: undirected graph G = (V, E) with edge costs

I Minimum spanning tree problem: find min-cost subset of
edges so there is a path between any u, v ∈ V .
I O(m log n) greedy algorithm

I Minimum Steiner tree problem: find min-cost subset of
edges so there is a path between any u, v ∈W
for specified set of nodes W (called terminals)
I No polynomial-time algorithm is known.
I but: for W = V : spanning tree O(m log n)
I for W = {u, v}: shortest path O(m log n)

Example: Knapsack Problem

I Input: n items with costs and weights, capacity W
I Goal: select items to maximize total cost without exceeding W

I Fractional knapsack: select fraction in [0, 1] of each item
I O(n log n) greedy algorithm

I 0-1 Knapsack: select all or none of each item
I O(nW) pseudo-polynomial time algorithm
I No polynomial time algorithm known!
I (Also none known for real weights)

I Subset-Sum Problem (Knapsack, no values)
I maximum weight ≤W : O(nW) pseudo-polynomial
I weight sum = W : no polynomial algorithm known

Tractability

I Working definition of efficient: polynomial time
I O(nd) for some d.

I Huge class of natural and interesting problems for which
I We don’t know any polynomial time algorithm
I We can’t prove that none exists

I Goal: develop mathematical tools to say when a problem is
hard or “intractable”

Preview of Lansdscape: Classes of Problems

P

NP

EXP

I P: solvable in polynomial time
I NP: includes most problems we don’t know about
I EXP: solvable in exponential time

NP-Completeness

P

NP

NP-
complete

I NP-complete: problems that are “as hard as” every other
problem in NP.

I A polynomial time algorithm for any NP-complete problem
implies one for every problem in NP

P 6= NP?

Two possibilities:

P

NP

NP-
complete

P = NP

P 6= NP P = NP

I We don’t know which is true, but think P 6= NP
I $1M prize to find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

P

NP

NP-
complete

I Polynomial-time reductions:
one problem is “as hard as” another
(what does this mean?)

I Define NP: characterize mystery
problems

I NP-completeness: some problems
in NP are “as hard as” all others

Polynomial-Time Reduction

I Problem Y is polynomial-time reducible to Problem X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I . . . if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves

problem X

I Notation Y ≤P X

Intractability: quiz 1

Suppose that X ≤ P Y. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.

B. X can be solved in poly time iff Y can be solved in poly time.

C. If X cannot be solved in polynomial time, then neither can Y.

D. If Y cannot be solved in polynomial time, then neither can X.

 9

slide credit: Kevin Wayne / Pearson

Polynomial-Time Reduction

I Y ≤P X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

I Statement abut relative hardness

1. If Y ≤P X and X ∈ P , then Y ∈ P
2. If Y ≤P X and Y /∈ P then X /∈ P

I 1: design algorithms, 2: prove hardness

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

1 2

3 4 5

6 7

I S ⊂ V is an independent set if no nodes in S share an edge.
Examples: {3, 4, 5}, {1, 4, 5, 6}.

I S ⊂ V is a vertex cover if every edge has at least one
endpoint in S. Examples: {1, 2, 6, 7}, {2, 3, 7}

Ind. Set. Does G have independent set of size at least k?
Vertex Cover. Does G have a vertex cover of size at most k?

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.

B. The black vertices are an independent set of size 3.

C. Both A and B.

D. Neither A nor B.

 15

slide credit: Kevin Wayne / Pearson

Independent Set and Vertex Cover

I Claim: S is independent set if and only if V − S is vertex
cover.

1. S independent set ⇒ V − S vertex cover
I Consider any edge (u, v)
I S independent ⇒ either u /∈ S or v /∈ S
I I.e., either u ∈ V − S or v ∈ V − S
I ⇒ V − S is a vertex cover

2. V − S vertex cover ⇒ S independent set
I Similar.

Independent Set ≤P Vertex Cover

Claim: Independent Set ≤P Vertex Cover. Reduction:
I On Independent Set instance 〈G, k〉
I Construct Vertex Cover instance 〈G, n− k〉
I Return Yes iff solveVC(〈G, n− k〉) = Yes

Correctness for Yes output:
I Suppose G has independent set S with ≥ k nodes
I Then T = V − S is a vertex cover with ≤ n− k nodes
I The algorithm correctly outputs Yes

Correctness for No output:
I Suppose G has no independent set S with ≥ k nodes
I Then there is no vertex cover with T with ≤ n− k nodes,

otherwise S = V − T is an independent set with ≥ k nodes.
I The algorithm correctly outputs No

Vertex Cover ≤P Independent Set

I Claim: Vertex Cover ≤P Independent Set
I Reduction:

I On Vertex Cover input 〈G, k〉
I Construct Independent Set input 〈G, n− k〉
I Return Yes if solveIS(〈G, n− k〉) = Yes

I Proof: similar

Decision versus Optimization

I For intractiability and reductions we focus on decision problems
(Yes/No answers)

I Algorithms have typically been for optimization
(find biggest/smallest)

I Can reduce optimization to decision and vice versa.

I If we can solve MaxIndSet(G) and result is S
then IndSet(G, k) has solution iff k ≤ |S|

I solve MaxIndSet(G) by solving IndSet(G, k), k = 1, . . . , n
or faster by doing binary search

Reduction Strategies

I Reduction by equivalence (Vertex Cover and Indpendent Set)

I Reduction to a more general case

I Reduction by “gadgets” (e.g., Satisfiability)

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets S1, . . . , Sm ⊂ U ,
and a number k, does there exist a collection of at most k subsets
Si whose union is U?
I Example: U = {A, B, C, D, E} is the set of all skills, there are

five people with skill sets:

S1 = {A, C}, S2 = {B, E}, S3 = {A, C, E}

S4 = {D}, S5 = {B, C, E}
I Find a small team that has all skills. S1, S4, S5

Theorem. VertexCover ≤P SetCover

Intractability: quiz 4

Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets,
which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

 20

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 1, 4, 6 } Sb = { 1, 6, 7 }

Sc = { 1, 2, 3, 6 } Sd = { 1, 3, 5, 7 } 
Se = { 2, 6, 7 } Sf = { 3, 4, 5 }

slide credit: Kevin Wayne / Pearson

Reduction of Vertex Cover to Set Cover

Reduction.
I Given Vertex Cover instance 〈G, k〉
I Construct Set Cover instance 〈U, S1, . . . , Sm, k〉 with

U = E, and Sv = the set of edges incident to v
I Return Yes iff solveSC(〈U, S1, . . . , Sm, k〉) = Yes

Proof
I Straightforward to see that Sv1 , . . . , Sv`

is a set cover of size `
if and only if v1, . . . , v` is a vertex cover of size `

I This implies the algorithm correctly outputs:
Yes if G has a vertex cover of size ≤ k and No otherwise

I Polynomial # of steps outside of solveSC
I Only one call to solveSC

A Bad Reduction

Reduction
I Given Vertex Cover instance 〈G, k〉
I Construct Set Cover instance 〈U, S0, S1, . . . , Sm, k〉 as

before but with additional set S0 = U
I Return Yes iff solveSC(〈U, S0, S1, . . . , Sm, k〉) = Yes

Analysis
I “Yes” instance: G has a vertex cover of size ≤ k

I U has a set cover of size ≤ k
I Output is Yes—correct

I “No” instance: G does not have a vertex cover of size ≤ k
I U does have a set cover of size ≤ k for k ≥ 1
I Output is Yes—incorrect

