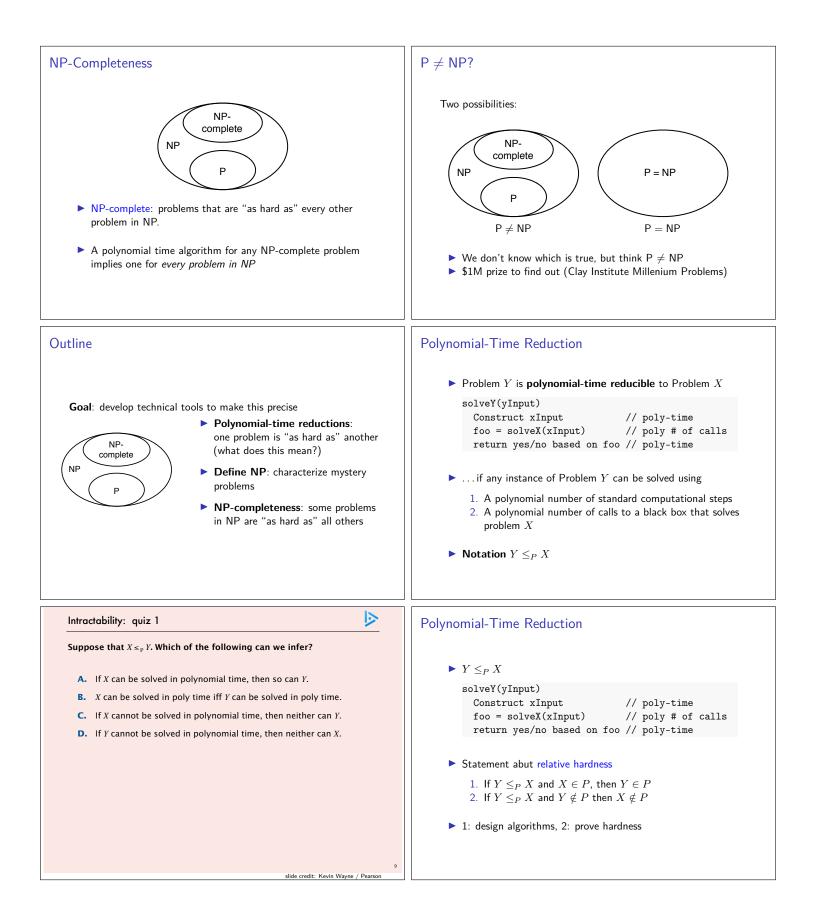
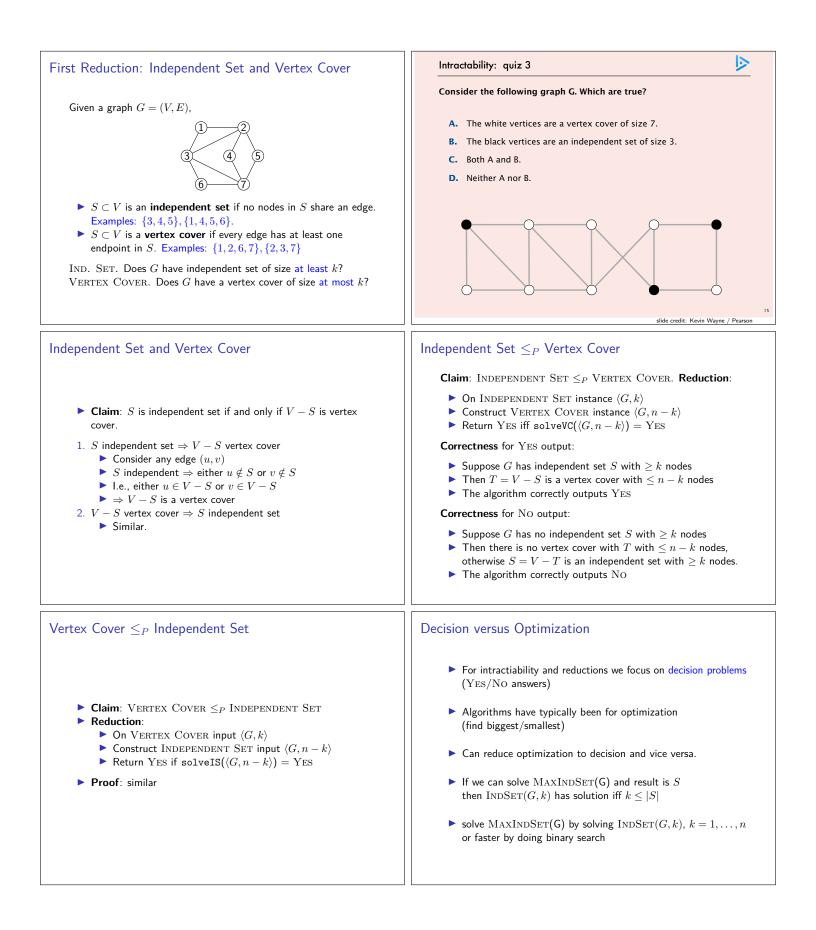
	Algorithm Design
COMPSCI 311: Introduction to Algorithms Lecture 19: Intractability: Polynomial-Time Reductions Marius Minea University of Massachusetts Amherst	 Formulate the problem precisely Design an algorithm Prove correctness Analyze running time Sometimes you can't find an efficient algorithm.
slides credit: Dan Sheldon	
Example: Graph Searches / Network Design	Example: Knapsack Problem
 Input: undirected graph G = (V, E) with edge costs Minimum spanning tree problem: find min-cost subset of edges so there is a path between any u, v ∈ V. O(m log n) greedy algorithm Minimum Steiner tree problem: find min-cost subset of edges so there is a path between any u, v ∈ W for specified set of nodes W (called terminals) No polynomial-time algorithm is known. but: for W = V: spanning tree O(m log n) for W = {u, v}: shortest path O(m log n) 	 Input: n items with costs and weights, capacity W Goal: select items to maximize total cost without exceeding W Fractional knapsack: select fraction in [0, 1] of each item O(n log n) greedy algorithm O-1 Knapsack: select all or none of each item O(nW) pseudo-polynomial time algorithm No polynomial time algorithm known! (Also none known for real weights) Subset-Sum Problem (Knapsack, no values) maximum weight ≤ W: O(nW) pseudo-polynomial weight sum = W: no polynomial algorithm known
Tractability	Preview of Lansdscape: Classes of Problems
 Working definition of efficient: polynomial time O(n^d) for some d. Huge class of natural and interesting problems for which We don't know any polynomial time algorithm We can't prove that none exists Goal: develop mathematical tools to say when a problem is hard or "intractable" 	 EXP NP P: solvable in polynomial time NP: includes most problems we don't know about EXP: solvable in exponential time





eduction Strategies		Reduction to General Case: Set Cover	
 Reduction by equivaler Reduction to a more g Reduction by "gadgets 		 Problem. Given a set U of n elements, subsets S₁,, S_m ⊂ U, and a number k, does there exist a collection of at most k subsets S_i whose union is U? Example: U = {A, B, C, D, E} is the set of all skills, there are five people with skill sets: S₁ = {A, C}, S₂ = {B, E}, S₃ = {A, C, E} S₄ = {D}, S₅ = {B, C, E} Find a small team that has all skills. S₁, S₄, S₅ Theorem. VERTEXCOVER ≤_P SETCOVER 	
Intractability: quiz 4	⊳	Reduction of Vertex Cover to Set Cover	
Given the universe U = { 1, 2, which is the minimum size of A. 1 B. 2 C. 3 D. None of the above.	$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $S_a = \{ 1, 4, 6 \} \qquad S_b = \{ 1, 6, 7 \}$ $S_c = \{ 1, 2, 3, 6 \} \qquad S_d = \{ 1, 3, 5, 7 \}$ $S_e = \{ 2, 6, 7 \} \qquad S_f = \{ 3, 4, 5 \}$	Reduction.• Given VERTEX COVER instance $\langle G, k \rangle$ • Construct SET COVER instance $\langle U, S_1, \ldots, S_m, k \rangle$ with $U = E$, and $S_v =$ the set of edges incident to v • Return YES iff solveSC($\langle U, S_1, \ldots, S_m, k \rangle$) = YES Proof • Straightforward to see that $S_{v_1}, \ldots, S_{v_\ell}$ is a set cover of size ℓ • This implies the algorithm correctly outputs: YES if G has a vertex cover of size $\leq k$ and No otherwise• Polynomial $\#$ of steps outside of solveSC• Only one call to solveSC	
Bad Reduction	2 slide credit: Kevin Wayne / Pearson		
 before but with additio Return YES iff solves Analysis "YES" instance: G has U has a set cover Output is YES—co "No" instance: G doe 	a instance $\langle U, S_0, S_1, \ldots, S_m, k \rangle$ as onal set $S_0 = U$ $\operatorname{SC}(\langle U, S_0, S_1, \ldots, S_m, k \rangle) = \operatorname{YES}$ is a vertex cover of size $\leq k$ of size $\leq k$ correct is not have a vertex cover of size $\leq k$ is cover of size $\leq k$ for $k \geq 1$		