COMPSCI 311: Introduction to Algorithms Lecture 19: Intractability: Polynomial-Time Reductions Marius Minea University of Massachusetts Amherst	Algorithm Design - Formulate the problem precisely - Design an algorithm - Prove correctness - Analyze running time Sometimes you can't find an efficient algorithm.
Example: Graph Searches / Network Design Input: undirected graph $G=(V, E)$ with edge costs - Minimum spanning tree problem: find min-cost subset of edges so there is a path between any $u, v \in V$. $O(m \log n)$ greedy algorithm - Minimum Steiner tree problem: find min-cost subset of edges so there is a path between any $u, v \in W$ for specified set of nodes W (called terminals) - No polynomial-time algorithm is known. - but: for $W=V$: spanning tree $O(m \log n)$ - for $W=\{u, v\}$: shortest path $O(m \log n)$	Example: Knapsack Problem - Input: n items with costs and weights, capacity W - Goal: select items to maximize total cost without exceeding W - Fractional knapsack: select fraction in $[0,1]$ of each item - $O(n \log n)$ greedy algorithm - 0-1 Knapsack: select all or none of each item - $O(n W)$ pseudo-polynomial time algorithm - No polynomial time algorithm known! - (Also none known for real weights) - Subset-Sum Problem (Knapsack, no values) - maximum weight $\leq W: O(n W)$ pseudo-polynomial - weight sum $=W$: no polynomial algorithm known
Tractability Working definition of efficient: polynomial time $O\left(n^{d}\right)$ for some d. Huge class of natural and interesting problems for which - We don't know any polynomial time algorithm - We can't prove that none exists - Goal: develop mathematical tools to say when a problem is hard or "intractable"	Preview of Lansdscape: Classes of Problems - P : solvable in polynomial time - NP: includes most problems we don't know about - EXP: solvable in exponential time

NP-complete: problems that are "as hard as" every other problem in NP.

- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP
$P \neq N P ?$

Two possibilities:

We don't know which is true, but think $P \neq N P$
\$1M prize to find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

- Polynomial-time reductions:

one problem is "as hard as" another (what does this mean?)
- Define NP: characterize mystery problems
- NP-completeness: some problems in NP are "as hard as" all others

Intractability: quiz 1

Suppose that $X \leq_{\mathrm{P}} Y$. Which of the following can we infer?
A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.

Polynomial-Time Reduction

- Problem Y is polynomial-time reducible to Problem X solveY (yInput)

$$
\begin{array}{ll}
\text { Construct xInput } & \text { // poly-time } \\
\text { foo = solveX(xInput) } & \text { // poly \# of calls } \\
\text { return yes/no based on foo // poly-time }
\end{array}
$$

- ... if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

- Notation $Y \leq_{P} X$

Polynomial-Time Reduction

- $Y \leq_{P} X$
solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly \# of calls return yes/no based on foo // poly-time
- Statement abut relative hardness

1. If $Y \leq_{P} X$ and $X \in P$, then $Y \in P$
2. If $Y \leq_{P} X$ and $Y \notin P$ then $X \notin P$

- 1: design algorithms, 2: prove hardness

First Reduction: Independent Set and Vertex Cover

Given a graph $G=(V, E)$,

- $S \subset V$ is an independent set if no nodes in S share an edge. Examples: $\{3,4,5\},\{1,4,5,6\}$.
- $S \subset V$ is a vertex cover if every edge has at least one endpoint in S. Examples: $\{1,2,6,7\},\{2,3,7\}$

Ind. Set. Does G have independent set of size at least k ? Vertex Cover. Does G have a vertex cover of size at most k ?

Intractability: quiz 3

Consider the following graph G. Which are true?
A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3 .
C. Both A and B.
D. Neither A nor B .

slide credit: Kevin Wayne / Pearson

Independent Set \leq_{P} Vertex Cover

Claim: Independent $\operatorname{Set} \leq_{P}$ Vertex Cover. Reduction:

- On Independent Set instance $\langle G, k\rangle$
- Construct Vertex Cover instance $\langle G, n-k\rangle$
- Return Yes iff solveVC $(\langle G, n-k\rangle)=$ Yes

Correctness for Yes output:

- Suppose G has independent set S with $\geq k$ nodes
- Then $T=V-S$ is a vertex cover with $\leq n-k$ nodes
- The algorithm correctly outputs Yes

Correctness for No output:

- Suppose G has no independent set S with $\geq k$ nodes
- Then there is no vertex cover with T with $\leq n-k$ nodes, otherwise $S=V-T$ is an independent set with $\geq k$ nodes.
- The algorithm correctly outputs No

Decision versus Optimization

- For intractiability and reductions we focus on decision problems (YEs/No answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa.
- If we can solve MaxIndSEt(G) and result is S then $\operatorname{IndSET}(G, k)$ has solution iff $k \leq|S|$
- solve MaxIndSET(G) by solving $\operatorname{IndSEt}(G, k), k=1, \ldots, n$ or faster by doing binary search
Reduction Strategies
\quad - Reduction by equivalence (Vertex Cover and Indpendent Set)
- Reduction to a more general case
- Reduction by "gadgets" (e.g., Satisfiability)

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_{1}, \ldots, S_{m} \subset U$, and a number k, does there exist a collection of at most k subsets S_{i} whose union is U ?

- Example: $U=\{A, B, C, D, E\}$ is the set of all skills, there are five people with skill sets:

$$
\begin{gathered}
S_{1}=\{A, C\}, \quad S_{2}=\{B, E\}, \quad S_{3}=\{A, C, E\} \\
S_{4}=\{D\}, \quad S_{5}=\{B, C, E\}
\end{gathered}
$$

Find a small team that has all skills. S_{1}, S_{4}, S_{5}
Theorem. VertexCover \leq_{P} SetCover

Intractability: quiz 4

Given the universe $U=\{1,2,3,4,5,6,7\}$ and the following sets, which is the minimum size of a set cover?
A. 1
B. 2
C. 3
D. None of the above.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{1,4,6\} & S_{b}=\{1,6,7\} \\
S_{c}=\{1,2,3,6\} & S_{d}=\{1,3,5,7\} \\
S_{e}=\{2,6,7\} & S_{f}=\{3,4,5\}
\end{array}
$$

Reduction of Vertex Cover to Set Cover

Reduction.

- Given Vertex Cover instance $\langle G, k\rangle$
- Construct Set Cover instance $\left\langle U, S_{1}, \ldots, S_{m}, k\right\rangle$ with $U=E$, and $S_{v}=$ the set of edges incident to v
- Return Yes iff solveSc $\left(\left\langle U, S_{1}, \ldots, S_{m}, k\right\rangle\right)=$ YeS

Proof

- Straightforward to see that $S_{v_{1}}, \ldots, S_{v_{\ell}}$ is a set cover of size ℓ if and only if v_{1}, \ldots, v_{ℓ} is a vertex cover of size ℓ
- This implies the algorithm correctly outputs:

Yes if G has a vertex cover of size $\leq k$ and No otherwise

- Polynomial \# of steps outside of solveSC
- Only one call to solveSC

A Bad Reduction

Reduction

- Given Vertex Cover instance $\langle G, k\rangle$
- Construct Set Cover instance $\left\langle U, S_{0}, S_{1}, \ldots, S_{m}, k\right\rangle$ as before but with additional set $S_{0}=U$
- Return Yes iff solveSC $\left(\left\langle U, S_{0}, S_{1}, \ldots, S_{m}, k\right\rangle\right)=$ Yes

Analysis

- "Yes" instance: G has a vertex cover of size $\leq k$
- U has a set cover of size $\leq k$
- Output is YES-correct
- "No" instance: G does not have a vertex cover of size $\leq k$
- U does have a set cover of size $\leq k$ for $k \geq 1$
- Output is Yes-incorrect

