COMPSCI 311: Introduction to Algorithms
Lecture 18: Network Flow Applications
Marius Minea
University of Massachusetts Amherst
slides credit: Dan Sheldon (adapted)

Max-Flow Min-Cut Theorem

- $v(f) \leq c(A, B)$ for any flow f and any s-t cut $c(A, B)$
- On termination, Ford-Fulkerson produces a max-flow f and min-cut (A, B)
- $A=$ set of nodes reachable from s in residual graph to find the min-cut
- Complexity
- $O\left(m n C_{\max }\right)$ for basic version
- $O\left(m^{2} \log C_{\max }\right)$ for capacity scaling
- Capacity-independent for choosing shortest augmenting paths $O\left(m^{2} n\right)$ Edmonds-Karp, $O\left(n^{2} m\right)$ Dinitz

Review: Network Flow

- Residual graph G_{f}.

Capacities: $c(e)-f(e)$ forward, $\$ \mathrm{f}(\mathrm{e})$ backward.

- Ford-Fulkerson

Initialize flow f to all zeros
\triangleright Augment flow as long as it is possible
while there exists an s - t path P in G_{f} do
$f=\operatorname{Augment}(f, P)$
update residual graph G_{f}
end while

- Analysis
- Always maintain a flow: use facts of residual graph and augment operation, verify that definition of flow still holds
- Termination and running time: flow increases at least one in each iteration, and cannot exceed total capacity leaving s
- Correctness: Max-Flow Min-Cut Theorem

Matching

Def. Given an undirected graph $G=(V, E)$, subset of edges $M \subseteq E$
is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G=(L \cup R, E)$, find a maxcardinality matching.

Formulating Matching as Network Flow problem

- Goal: given matching instance $G=(L \cup R, E)$:
- create a flow network G^{\prime},
- find a maximum flow f in G^{\prime}
- use f to construct a maximum matching M in G.
- Standard approach for reducing a problem to network flow
- Intuition?

Connect left set L to source, right set R to sink.
Larger matchings should have larger flows.
How to select capacities?

Maximal Matching as Network Flow
 - Add a source s and $\operatorname{sink} t$
 - For each edge $(u, v) \in E$, add $u \rightarrow v$ (directed), capacity 1
 - Add an edge with capacity 1 from s to each node $u \in L$
 - Add an edge with capacity 1 from each node $v \in R$ to t.

Does it matter if we have unit or infinite capacities from L to

Maximal Matching: Analysis

- Run F-F to get an integral max-flow f
- Set M to the set of edges from L to R with flow $f(e)=1$
- Claim: The set M is a maximum matching.

Let's prove that:

1. Integer flow f in $G^{\prime} \Longrightarrow$ matching M in G with $|M|=v(f)$
2. Matching M in $G \Longrightarrow$ flow f in G^{\prime} with $v(f)=|M|$

Therefore, max-flow f in $G^{\prime} \Longleftrightarrow$ maximum matching M in G
Proof of 1: given f, construct M

- $M=$ edges from L to R carrying one unit of flow
- Capacity constraints \Rightarrow at most 1 unit of flow leaving $u \in L$
- Edge flows are 0 or $1 \Rightarrow M$ has at most one edge incident to u.
- Similar argument for $v \in R$

Network flow II: quiz 1

What is running time of Ford-Fulkerson algorithms to find a maximum matching in a bipartite graph with $|L|=|R|=n$?
A. $O(m+n)$
B. $O(m n)$
C. $O\left(m n^{2}\right)$
D. $O\left(m^{2} n\right)$

Clicker Question 1

Suppose I want to work with ∞ values (for shortest path, minimum cost, maximum flow, etc.) What properties would I need to add and compare values?

A: $x \neq \infty \rightarrow x<\infty$
B: $\infty+\infty=\infty$
C: Both A and B
D: A and something stronger than B

Proof of 2: given M, construct f

- Set $f(e)=1$ if $e \in M$
- Send one unit of flow from s to $u \in L$ if u is matched
- Send one unit of flow from $v \in R$ to t if t is matched
- All other edge flow values are zero
- Verify that capacity and flow conservation constraints are satisfied, and that $v(f)=|M|$.

Perfect matchings in bipartite graphs

Def. Given a graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have $|L|=|R|$.
- Which other conditions are necessary?
- Which other conditions are sufficient?

Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G=(L \cup R, E)$ has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.
Pf. Each node in S has to be matched to a different node in $N(S)$. -

Hall's marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$. Then, graph G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.

slide credit: Kevin Wayne / Pearson

Hall's marriage theorem

Pf. \Leftarrow Suppose G does not have a perfect matching.

- Formulate as a max-flow problem and let (A, B) be a min cut in G^{\prime}
- By max-flow min-cut theorem, $\operatorname{cap}(A, B)<|L|$.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
- $\operatorname{cap}(A, B)=\left|L_{B}\right|+\left|R_{A}\right| \Rightarrow\left|R_{A}\right|<\left|L_{A}\right|$.
- Min cut can't use ∞ edges $\Rightarrow N\left(L_{A}\right) \subseteq R_{A}$.
- $\left|N\left(L_{A}\right)\right| \leq\left|R_{A}\right|<\left|L_{A}\right|$.
- Choose $S=L_{A}$. -
slide credit: Kevin Wayne / Pearson \square

Image segmentation

Image segmentation.

- Divide image into coherent regions.
- Central problem in image processing.

Ex. Separate human and robot from background scene.

Network flow II: quiz 2

Which of the following are properties of the graph $G=(V, E)$?
A. G has a perfect matching.
B. Hall's condition is satisfied: $|N(S)| \geq|S|$ for all subsets $S \subseteq V$.
C. Both A and B.
D. Neither A nor B .

,

Grabcut image segmentation

Grabcut. [Rother-Kolmogorov-Blake 2004]

Figure 1: Three examples of GrabCut. The user drags a rectangle losely around an object. The obiject is then extracted automatically

Bokeh Effect: Blurring Background

- Using an expensive camera and appropriate lenses, you can get a "bokeh" effect on portrait photos:
the background is blurred and the foreground is in focus.

- Can fake effect using cheap phone cameras and appropriate software

Formulating the Problem

Given set V of pixels, classify each as foreground or background. Assume you have:

- Likelihood that a pixel is in foreground $\left(a_{i}\right) /$ background $\left(b_{i}\right)$
- Numeric penalty $p_{i j}$ for assigning neighboring pixels i and j to different classes

Graph edges E : for each pixel, edge to neighbors (4? 8? other?)
Criteria:

- Accuracy if $a_{i}>b_{i}$, would prefer to label pixel i as foreground
- Smoothness: if many neighbors are labeled the same (foreground), would like to label pixel i as foreground (minimize penalties)

Image Segmentation as Network Flow

Maximize correct labeling scores, minimize penalties
Let A : set of pixels labeled foreground, B : pixels in background
Maximize: $\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E, i \in A, j \in B} p_{i j}$

Insight: (A, B) is a partition \Rightarrow forms a cut
First sum is $\sum_{i \in V}\left(a_{i}+b_{i}\right)-\sum_{i \in A} b_{i}-\sum_{j \in B} a_{j}$
(constant minus "penalties" for mislabeling)
Must minimize $\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{(i, j) \in E, i \in A, j \in B} p_{i j}$
\Rightarrow find minimum cut

Image segmentation

Consider min cut (A, B) in G^{\prime}.

- $A=$ foreground.

$$
\operatorname{cap}(A, B)=\sum_{j \in B} a_{j}+\sum_{i \in A} b_{i}+\sum_{\substack{(i, j) \in E \\ i \in A, j \in B}} p_{i j} \longleftarrow \substack{\text { if } i \text { and } j \text { on different sides, } \\ p_{i j} \text { counted exactly once }}
$$

- Precisely the quantity we want to minimize.

Image segmentation

Formulate as min-cut problem $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

- Include node for each pixel.
- Use two antiparallel edges instead of undirected edge.
- Add source s to correspond to foreground.
- Add $\operatorname{sink} t$ to correspond to background.
edge in G

wo antiparallel edges in \mathbf{G}^{\prime}

More Network Flows

- Extensions
- Multiple sources and sinks
- Circulations with supplies and demands
- Flows with lower bounds
- Improved Algorithms: Preflow-push $O\left(n^{3}\right)$
- Applications
- Network connectivity
- Data mining: survey design
- Airline scheduling
- Baseball elimination
- Multi-camera placement / scene reconstruction

