COMPSCI 311: Introduction to Algorithms

Lecture 18: Network Flow Applications

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Review: Network Flow

» Residual graph G/.
Capacities: c(e) — f(e) forward, $f(e) backward.

» Ford-Fulkerson

Initialize flow f to all zeros
> Augment flow as long as it is possible
while there exists an s-t path P in Gy do
f = Augment(f, P)
update residual graph Gy
end while

» Analysis

» Always maintain a flow: use facts of residual graph and
augment operation, verify that definition of flow still holds

» Termination and running time: flow increases at least one in
each iteration, and cannot exceed total capacity leaving s

» Correctness: Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

> u(f) < c(A,B) for any flow f and any s-t cut c(A, B)

» On termination, Ford-Fulkerson produces a max-flow f and
min-cut (A, B)

» A = set of nodes reachable from s in residual graph
to find the min-cut

» Complexity

» O(mnCiax) for basic version

» O(m?log Cpax) for capacity scaling

> Capacity-independent for choosing shortest augmenting paths
O(m?n) Edmonds-Karp, O(n?m) Dinitz

Matching

Def. Given an undirected graph G = (V, E), subset of edges MCE
is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

slide credit: Kevin Wayne / Pearson

Bipartite matching

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max-
cardinality matching.

matching: 1-1',2-2', 3-4', 4-5'

slide credit: Kevin Wayne / Pearson

Formulating Matching as Network Flow problem

> Goal: given matching instance G = (LUR, E):

> create a flow network G,
» find a maximum flow f in G’
> use f to construct a maximum matching M in G.

» Standard approach for reducing a problem to network flow

» Intuition?
Connect left set L to source, right set R to sink.
Larger matchings should have larger flows.

How to select capacities?

Maximal Matching as Network Flow
» Add a source s and sink ¢
> For each edge (u,v) € E, add u — v (directed), capacity 1
» Add an edge with capacity 1 from s to each node u € L
» Add an edge with capacity 1 from each node v € R to t.

¢ @ % @

r@Q ® © ©
=@ @ @ ©

» Does it matter if we have unit or infinite capacities from L to

Clicker Question 1

Suppose | want to work with co values (for shortest path, minimum
cost, maximum flow, etc.) What properties would | need to add and
compare values?

Aiz#oco—x <00
B: 0o+ 00 =00
C: Both A and B

D: A and something stronger than B

Maximal Matching: Analysis
» Run F-F to get an integral max-flow f
> Set M to the set of edges from L to R with flow f(e) =1
» Claim: The set M is a maximum matching.

Let's prove that:

1. Integer flow f in G’ = matching M in G with |M| = v(f)
2. Matching M in G = flow f in G’ with v(f) = |M]|

Therefore, max-flow f in G’ <= maximum matching M in G

Proof of 1: given f, construct M

» M = edges from L to R carrying one unit of flow
» Capacity constraints = at most 1 unit of flow leaving u € L
» Edge flows are 0 or 1 = M has at most one edge incident to u.

» Similar argument for v € R

Maximal Matching: Analysis

Proof of 2: given M, construct f

> Set f(e)=1ifec M
Send one unit of flow from s to w € L if u is matched
Send one unit of flow from v € R to ¢ if ¢ is matched

All other edge flow values are zero

Verify that capacity and flow conservation constraints are
satisfied, and that v(f) = |M

vyvYyYy

Network flow II: quiz 1 >

What is running time of Ford-Fulkerson algorithms to find a maximum
matching in a bipartite graph with |L| = |[R|=n?

A O(m+n)
B. O(mn)
C. O(mn)
D. O(m*n)

slide credit: Kevin Wayne / Pearson

Perfect matchings in bipartite graphs

Def. Given a graph G =(V,E), a subset of edges M CE is a perfect matching
if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?
Structure of bipartite graphs with perfect matchings.
* Clearly, we must have |L|=|R].

« Which other conditions are necessary?
« Which other conditions are sufficient?

slide credit: Kevin Wayne / Pearson

Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G=(L U R, E) has a perfect matching,

then |[N(S)| = | S| for all subsets SCL.
Pf. Each node in S has to be matched to a different node in N(S). =

@
e

$={2,4,5}
N(S) ={2,5"}

no perfect matching 13

slide credit: Kevin Wayne / Pearson

Hall’s marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let G=(L UR,E) be a bipartite graph
with |L| = |R|. Then, graph G has a perfect matching iff | N(S)| = | S| for all
subsets SC L. -~

)

Pf. = This was the previous observation.

$={2,4,5}
N(S) ={2,5"}

no perfect matching

slide credit: Kevin Wayne / Pearson

Hall’s marriage theorem

Pf. < Suppose G does not have a perfect matching.

Formulate as a max-flow problem and let (A, B) be a min cut in G'.

By max-flow min-cut theorem, cap(A, B) < |L|.
Define Ly,=LNA, Lg=LNB, Ry=RNA.
cap(A,B) = |Lgl + [Ryl = R4l < |Lyl.

Min cut can’t use » edges = N(L,) C Ry.
‘N(LA)I = |RA| < |LA|-

Choose S=L,. =

.

.

@

o 1 o *
A (0] L =1{2,4,5
- e Le ={1, 3}
2] 1 ® Ra =12,5%
© N(Lw) = {2/, 5%

1
© e ®
% e ! ®

slide credit: Kevin Wayne / Pearson

Network flow II: quiz 2 >

Which of the following are properties of the graph G = (V, E)?

G has a perfect matching.
Hall’s condition is satisfied: |N(S)| = |S| for all subsets SC V.

Both A and B.

o n =® >

Neither A nor B.

slide credit: Kevin Wayne / Pearson

Image segmentation

Image segmentation.
» Divide image into coherent regions.
« Central problem in image processing.

Ex. Separate human and robot from background scene.

slide credit: Kevin Wayne / Pearson

Grabcut image segmentation

Grabcut. [Rother-Kolmogorov-Blake 2004]

“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother" Vladimir Kolmogorov' Andrew Blake®
Microsoft Research Cambridge, UK

Figure I: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.

slide credit: Kevin Wayne / Pearson

Bokeh Effect: Blurring Background

» Using an expensive camera and appropriate lenses, you can get
a "bokeh" effect on portrait photos:
the background is blurred and the foreground is in focus.

-

» Can fake effect using cheap phone cameras and appropriate
software

Formulating the Problem

Given set V' of pixels, classify each as foreground or background.
Assume you have:

> Likelihood that a pixel is in foreground (a;) / background (b;)
» Numeric penalty p;; for assigning neighboring pixels i and j to
different classes

Graph edges E: for each pixel, edge to neighbors (4?7 8?7 other?)

Criteria:
» Accuracy if a; > b;, would prefer to label pixel i as foreground
» Smoothness: if many neighbors are labeled the same

(foreground), would like to label pixel ¢ as foreground
(minimize penalties)

Image Segmentation as Network Flow

Maximize correct labeling scores, minimize penalties

Let A: set of pixels labeled foreground, B: pixels in background

Maximize: Zai + Z bj — Z Dij

i€A jEB (i,j)€EicA,jEB

Insight: (A, B) is a partition = forms a cut

First sum is 30,y (a; + b)) — ¥ieabi — X jep aj
(constant minus “penalties” for mislabeling)

Must minimize » b, + Y a; + D Dij

€A jeB (i,§)€EicAjEB

= find minimum cut

Image segmentation

edge in G

O—wn——=0

Formulate as min-cut problem G'=(V', E").
« Include node for each pixel.
« Use two antiparallel edges instead of
undirected edge.
« Add source s to correspond to foreground.
« Add sink ¢ to correspond to background.

two antiparallel edges in G’

i

@

L)
Pii

bi

slide credit: Kevin Wayne / Pearson

Image segmentation

Consider min cut (A,B) in G'.
« A= foreground.

cap(A,B) = Da; + Y b + > py

JjEB i€A (i,j)EE if i and j on different sides,
i€A, jEB pij counted exactly once

« Precisely the quantity we want to minimize.

slide credit: Kevin Wayne / Pearson

More Network Flows

» Extensions

» Multiple sources and sinks
» Circulations with supplies and demands
» Flows with lower bounds

» Improved Algorithms: Preflow-push O(n?)

» Applications

» Network connectivity

» Data mining: survey design

Airline scheduling

Baseball elimination

» Multi-camera placement / scene reconstruction

| 2
>

