COMPSCI 311: Introduction to Algorithms

Lecture 18: Network Flow Applications

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Review: Network Flow

- ▶ Residual graph G_f . Capacities: c(e) - f(e) forward, f(e) backward.
- ► Ford-Fulkerson

Initialize flow f to all zeros $ightharpoonup \operatorname{Augment flow}$ as long as it is possible while there exists an s-t path P in G_f do $f = \operatorname{Augment}(f, P)$ update residual graph G_f end while

- Analysis
 - Always maintain a flow: use facts of residual graph and augment operation, verify that definition of flow still holds
 - Termination and running time: flow increases at least one in each iteration, and cannot exceed total capacity leaving s
 - ► Correctness: Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

- $\triangleright v(f) \le c(A,B)$ for any flow f and any s-t cut c(A,B)
- \blacktriangleright On termination, Ford-Fulkerson produces a max-flow f and min-cut (A,B)
- $lackbox{ }A=\mbox{set}$ of nodes reachable from s in residual graph to find the min-cut
- Complexity
 - $ightharpoonup O(mnC_{
 m max})$ for basic version
 - $ightharpoonup O(m^2 \log C_{
 m max})$ for capacity scaling
 - \blacktriangleright Capacity-independent for choosing shortest augmenting paths $O(m^2n)$ Edmonds-Karp, $O(n^2m)$ Dinitz

Matching

Def. Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

slide credit: Kevin Wayne / Pearson

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max-cardinality matching.

Formulating Matching as Network Flow problem

- ▶ **Goal**: given matching instance $G = (L \cup R, E)$:
 - ightharpoonup create a flow network G',
 - ightharpoonup find a maximum flow f in G'
 - ightharpoonup use f to construct a maximum matching M in G.
- Standard approach for reducing a problem to network flow
- ► Intuition?

Connect left set ${\cal L}$ to source, right set ${\cal R}$ to sink.

Larger matchings should have larger flows.

How to select capacities?

Maximal Matching as Network Flow

- ightharpoonup Add a source s and sink t
- ▶ For each edge $(u, v) \in E$, add $u \to v$ (directed), capacity 1
- lackbox Add an edge with capacity 1 from s to each node $u \in L$
- ▶ Add an edge with capacity 1 from each node $v \in R$ to t.

 $\,\blacktriangleright\,$ Does it matter if we have unit or infinite capacities from L to

Clicker Question 1

Suppose I want to work with ∞ values (for shortest path, minimum cost, maximum flow, etc.) What properties would I need to add and compare values?

A:
$$x \neq \infty \rightarrow x < \infty$$

B:
$$\infty + \infty = \infty$$

Maximal Matching: Analysis

- $ightharpoonup \ensuremath{\mathsf{Run}}$ Fun F-F to get an integral max-flow f
- $lackbox{ Set }M$ to the set of edges from L to R with flow f(e)=1
- ightharpoonup Claim: The set M is a maximum matching.

Let's prove that:

- 1. Integer flow f in $G' \Longrightarrow \text{matching } M$ in G with |M| = v(f)
- 2. Matching M in $G \Longrightarrow \text{flow } f$ in G' with v(f) = |M|

Therefore, max-flow f in $G' \Longleftrightarrow$ maximum matching M in G

Proof of 1: given f, construct M

- $\blacktriangleright \ M = {\rm edges} \ {\rm from} \ L \ {\rm to} \ R \ {\rm carrying} \ {\rm one} \ {\rm unit} \ {\rm of} \ {\rm flow}$
- lackbox Capacity constraints \Rightarrow at most 1 unit of flow leaving $u \in L$
- lackbox Edge flows are 0 or 1 \Rightarrow M has at most one edge incident to u.
- $\blacktriangleright \ \ {\sf Similar \ argument \ for \ } v \in R$

Maximal Matching: Analysis

Proof of 2: given M, construct f

- ightharpoonup Set f(e) = 1 if $e \in M$
- $lackbox{Send}$ one unit of flow from s to $u \in L$ if u is matched
- ightharpoonup Send one unit of flow from $v \in R$ to t if t is matched
- ► All other edge flow values are zero
- lackbox Verify that capacity and flow conservation constraints are satisfied, and that v(f)=|M|.

Network flow II: quiz 1

What is running time of Ford-Fulkerson algorithms to find a maximum matching in a bipartite graph with |L| = |R| = n?

- A. O(m+n)
- **B.** *O*(*mn*)
- C. O(mn²)
- **D.** $O(m^2n)$

Perfect matchings in bipartite graphs

Def. Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have |L| = |R|.
- · Which other conditions are necessary?
- · Which other conditions are sufficient?

Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in N(S).

slide credit: Kevin Wayne / Pearson

Hall's marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. → This was the previous observation.

slide credit: Kevin Wayne / Pearson

Hall's marriage theorem

Pf. \leftarrow Suppose G does not have a perfect matching.

- Formulate as a max-flow problem and let (A, B) be a min cut in G'.
- By max-flow min-cut theorem, cap(A, B) < |L|.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
- $\bullet \ \operatorname{\it cap}(A,B) \ = \ |L_B| \ + \ |R_A| \ \Rightarrow \ |R_A| \ < \ |L_A|.$
- Min cut can't use ∞ edges $\Rightarrow N(L_A) \subseteq R_A$.
- $\bullet \ |N(L_A)| \leq |R_A| < |L_A|.$

• Choose $S = L_A$. •

slide credit: Kevin Wayne / Pearso

15

Network flow II: quiz 2

Which of the following are properties of the graph G = (V, E)?

- A. G has a perfect matching.
- **B.** Hall's condition is satisfied: $|N(S)| \ge |S|$ for all subsets $S \subseteq V$.
- C. Both A and B.
- D. Neither A nor B.

Image segmentation

Image segmentation.

- · Divide image into coherent regions.
- · Central problem in image processing.

Ex. Separate human and robot from background scene.

slide credit: Kevin Wayne / Pearson

Grabcut image segmentation

Grabcut. [Rother-Kolmogorov-Blake 2004]

"GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Vladimir Kolmogorov† oft Research Cambridge, UK

slide credit: Kevin Wayne / Pearson

Bokeh Effect: Blurring Background

▶ Using an expensive camera and appropriate lenses, you can get a "bokeh" effect on portrait photos:

the background is blurred and the foreground is in focus.

► Can fake effect using cheap phone cameras and appropriate software

Formulating the Problem

Given set V of pixels, classify each as foreground or background. Assume you have:

- \blacktriangleright Likelihood that a pixel is in foreground (a_i) / background (b_i)
- lacktriangle Numeric penalty p_{ij} for assigning neighboring pixels i and j to different classes

Graph edges E: for each pixel, edge to neighbors (4? 8? other?)

- Accuracy if $a_i > b_i$, would prefer to label pixel i as foreground
- ▶ Smoothness: if many neighbors are labeled the same (foreground), would like to label pixel i as foreground (minimize penalties)

Image Segmentation as Network Flow

Maximize correct labeling scores, minimize penalties

Let A: set of pixels labeled foreground, B: pixels in background

$$\textbf{Maximize: } \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$$

Insight: (A,B) is a partition \Rightarrow forms a $\operatorname{\mathbf{cut}}$

First sum is $\sum_{i \in V} (a_i + b_i) - \sum_{i \in A} b_i - \sum_{j \in B} a_j$ (constant minus "penalties" for mislabeling)

Must minimize
$$\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$$

⇒ find minimum cut

Image segmentation

Formulate as min-cut problem G' = (V', E').

- · Include node for each pixel.
- · Use two antiparallel edges instead of undirected edge.
- Add source s to correspond to foreground.
- Add sink t to correspond to background.

Image segmentation

Consider min cut (A, B) in G'.

$$cap(A,B) \ = \ \sum_{j \in B} a_j \ + \ \sum_{i \in A} b_i \ + \sum_{\substack{(i,j) \in E \\ i \in A, \ j \in B}} p_{ij} \qquad \text{if i and j on different sides,} \\ p_{ij} \text{ counted exactly once}$$

· Precisely the quantity we want to minimize.

More Network Flows

- Extensions
 - ► Multiple sources and sinks
 - Circulations with supplies and demands
 - ► Flows with lower bounds
- ▶ Improved Algorithms: Preflow-push $O(n^3)$
- Applications
 - Network connectivity
 - Data mining: survey design
 - ► Airline scheduling
 - Baseball elimination
 - ▶ Multi-camera placement / scene reconstruction