COMPSCI 311: Introduction to Algorithms Lecture 17: Network Flow

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Review: Augmenting Flows

residual graph; edges: forward (difference), reverse (existing flow) augmenting path: $s \rightsquigarrow r$ in residual graph, bottleneck capacity

Review: Ford-Fulkerson Algorithm

ightharpoonup Augment flow as long as it is possible while there exists an s-t path P in G_f do $f = \operatorname{Augment}(f,\,P)$ update G_f end while

Relate maximum flow to minimum cut

Clicker Question 1

What is the value of the flow across the black-white cut?

A: 10

B: 15

C: 20

D: 25

Flow Value Lemma

 $\mathsf{return}\ f$

First relationship between cuts and flows

Lemma: let f be any flow and (A,B) be any s-t cut. Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Proof (see book) use conservation of flow: all the flow out of s must leave A eventually.

Rewrite flow as $v(f) = \sum_{v \in A} f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v)$

only nonzero difference is f(s)

Consider cases: edge in A, leading out of A, leading into A

Network flow: quiz 3

|>

Which is the net flow across the given cut?

Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let f be any s-t flow and let (A,B) be any s-t cut. Then $v(f) \leq c(A,B)$.

Proof:

$$\begin{split} v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \\ &\leq \sum_{e \text{ out of } A} f(e) \\ &\leq \sum_{e \text{ out of } A} c(e) \\ &= c(A,B) \end{split}$$

Duality: Max Flow - Min Cut

Claim If there is a flow f^* and cut (A^*,B^*) such that $v(f^*)=c(A^*,B^*)$, then

- $ightharpoonup f^*$ is a maximum flow
- $ightharpoonup (A^*, B^*)$ is a minimum cut

F-F returns a maximum flow

Theorem: The s-t flow f returned by F-F is a maximum flow.

- ightharpoonup Since f is the final flow there are no residual paths in G_f .
- Let (A, B) be the s-t cut where A consists of all nodes reachable from s in the residual graph.
 - ▶ Any edge out of A must have f(e) = c(e) otherwise there would be more nodes than just A that reachable from s.
 - ▶ Any edge into A must have f(e) = 0 otherwise there would be more nodes than just A that reachable from s.
- Therefore

$$\begin{split} v(f) &= \sum_{e \text{ out of}A} f(e) - \sum_{e \text{ into}A} f(e) \\ &= \sum_{e \text{ out of}A} c(e) = c(A,B) \end{split}$$

F-F finds a minimum cut

Theorem: The cut (A,B) where A is the set of all nodes reachable from s in the residual graph is a minimum-cut.

F-F finds a minimum cut

Capacity 163,000 tons per day [Harris and Ross 1955]

Ford-Fulkerson Running Time

- ▶ Flow increases at least one unit per iteration
- ► F-F terminates in at most C_s iterations, where C_s is sum of capacities leaving source.
- $ightharpoonup C_s \le n \, C_{\max}$ (in terms of maximum edge capacity)
- ▶ Running time: $O(m n C_{\text{max}})$

Is this polynomial? pseudo-polynomial (exponential in $\log C_{
m max})$

Improving Running Time

Choose good augmenting paths, with

- ► Large enough bottleneck capacity

 Maximum hard to find, but can cleverly search for good values
- ► Fewest edges (Edmonds-Karp, Dinitz)

Capacity-scaling algorithm

Overview. Choosing augmenting paths with "large" bottleneck capacity.

- Maintain scaling parameter Δ .
- though not necessarily largest
- Let $G_f(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.

Capacity-scaling algorithm

CAPACITY-SCALING(G) FOREACH edge $e \in E: f(e) \leftarrow 0$. $\Delta \leftarrow$ largest power of $2 \leq C$. WHILE ($\Delta \geq 1$) $G_f(\Delta) \leftarrow \Delta$ -residual network of G with respect to flow f. WHILE (there exists an $s \rightarrow t$ path P in $G_f(\Delta)$) $f \leftarrow$ AUGMENT(f, c, P). Update $G_f(\Delta)$. Δ -scaling phase $\Delta \leftarrow \Delta / 2$.

slide credit: Kevin Wayne / Pearson

43

Capacity-Scaling: Running Time

How many scaling phases? $\log C_{\max}$ (precisely: $1 + \lfloor \log C_{\max} \rfloor$)

How much does the flow increase at every augmentation? $\geq \Delta$

How many augmentations per phase?

Intuition: at end of each Δ phase, residual capacity on an edge in minimum cut less than $\Delta,$ else we would have augmented more.

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase.

Then, the max-flow value $\leq val(f) + m \Delta$.

Pf.

- We show there exists a cut (A,B) such that $cap(A,B) \leq val(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of $A: s \in A$.
- By definition of flow $f: t \notin A$.

 $\geq cap(A, B) - m\Delta$

edge e = (v, w) with $v \in B, w \in A$ must have $f(e) < \Delta$

edge e = (v, w) with $v \in A, w \in B$ must have $f(e) > c(e) - \Delta$

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase.

Then, the max-flow value $\leq val(f) + m \Delta$.

Pf. Next slide.

Lemma 3. There are $\leq 2m$ augmentations per scaling phase.

Pf.

or equivalently, at the end

- Let f be the flow at the beginning of a Δ -scaling phase.
- Lemma 2 \Rightarrow max-flow value $\leq val(f) + m (2 \Delta)$.
- Each augmentation in a $\Delta\text{-phase}$ increases $\mathit{val}(f)$ by at least $\Delta.$ •

Theorem. The capacity-scaling algorithm takes $O(m^2 \log C)$ time.

- Lemma 1 + Lemma 3 $\Rightarrow O(m \log C)$ augmentations.
- Finding an augmenting path takes O(m) time. •

slide credit: Kevin Wayne / Pearson

Shortest augmenting path

- Q. How to choose next augmenting path in Ford-Fulkerson?
- A. Pick one that uses the fewest edges.

can find via RF

SHORTEST-AUGMENTING-PATH(G)

FOREACH $e \in E$: $f(e) \leftarrow 0$.

 $G_f \leftarrow \text{residual network of } G \text{ with respect to flow } f.$

WHILE (there exists an $s \rightarrow t$ path in G_f)

 $P \leftarrow \text{Breadth-First-Search}(G_f).$

 $f \leftarrow \text{AUGMENT}(f, c, P).$

Update G_f .

RETURN f.

slide credit: Kevin Wayne / Pearson

Network flow: quiz 6

How to compute the level graph L_G efficiently?

- Depth-first search.
- B. Breadth-first search.
- C. Both A and B.
- D. Neither A nor B.

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.

Pf. Ahead.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes $O(m^2 n)$ time.

- O(m) time to find a shortest augmenting path via BFS.
- There are $\leq m n$ augmentations.
- at most m augmenting paths of length $k \leftarrow$ Lemma 1 + Lemma 2
- at most *n*−1 different lengths •

augmenting paths are simple paths

49

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

- $\ell(v)$ = number of edges in shortest $s \rightarrow v$ path.
- $L_G = (V, E_G)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Network flow: quiz 5

Which edges are in the level graph of the following digraph?

- **A.** D→F.
- **B.** E→F.
- C. Both A and B.
- D. Neither A nor B.

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

- $\ell(v)$ = number of edges in shortest $s \rightarrow v$ path.
- $L_G = (V, E_G)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Key property. P is a shortest $s \rightarrow v$ path in G iff P is an $s \rightarrow v$ path in L_G .

Shortest augmenting path: analysis

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

- At least one (bottleneck) edge is deleted from $\mathcal{L}_{\mathcal{G}}$ per augmentation.
- No new edge added to L_G until shortest path length strictly increases. ullet

Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.

- Let f and f^\prime be flow before and after a shortest-path augmentation.
- Let L_G and $L_{G'}$ be level graphs of G_f and $G_{f'}$.
- Only back edges added to $G_{f^{\prime}}$

(any $s\rightarrow t$ path that uses a back edge is longer than previous length) •

Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes $O(m^2 n)$ time.

/ Pearson