COMPSCI 311: Introduction to Algorithms

Lecture 17: Network Flow

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Review: Augmenting Flows

residual graph; edges: forward (difference), reverse (existing flow)

augmenting path: s ~» r in residual graph, bottleneck capacity

new flow

Review: Ford-Fulkerson Algorithm

Clicker Question 1

What is the value of the flow across the black-white cut?

A: 10
> Augment flow as long as it is possible B: 15
while there exists an s-t path P in Gy do C: 20
f = Augment(f, P
( ) D: 25
update G
end while
return f — 5/ —p
/ I \ edges from B to A
0/4 o
Relate maximum flow to minimum cut /o
< T T_]O/lo»t‘ value of flow =
// 0/4\ 0/15
\ 10/1 \ /
. D
Flow Value Lemma Network flow: quiz 3 o
Which is the net flow across the given cut?
First relationship between cuts and flows A 11 Q0425-8-11-9-6)
Lemma: let f be any flow and (4, B) be any s-t cut. Then B. 26 (20+22-8-4-4)
C. 42 (20+22)
o(f)= > fle)— Y fle) D. 45 (20+25)
e out of A einto A
Proof (see book) use conservation of flow: flow  capacity
all the flow out of s must leave A eventually. Y \g/’g a0
Rewrite flow as v(f) = X ca [ (v) — fi"(v) ‘ \ ‘ / ‘
S L
only nonzero difference is f(s) 'T /’e\sr % e e

Consider cases: edge in A, leading out of A, leading into A

| |
.— l/l—».—u/l>.‘{zz/zs—» '

28

slide credit: Kevin Wayne / Pearson




Corollary: Cuts and Flows Duality: Max Flow — Min Cut

Really important corollary of flow-value lemma e 815 —() O

TN I\, Vad J ‘
Corollary: Let f be any s-t flow and let (A, B) be any s-t cut. 7/\“\ ! U 0\ = \ 7
Then v(f) < c(A, B). RV N v /'
Proof: "\ © \l/\h\ \L 10
> A Y 5@ O e =5

2,
’s

L/

v(f) =
e out of A einto A value of flow = 28 = capacity of cut = 28 3
< D fle
e out of A Claim If there is a flow f* and cut (A*, B*) such that
< Z c(e) v(f*) = ¢(A*, B*), then
e out of A
= ¢(A, B) > f*isa m.aximur_n.flow
> (A*,B*) is a minimum cut
F-F returns a maximum flow F-F finds a minimum cut
Theorem: The cut (A, B) where A is the set of all nodes reachable
Theorem: The s-t flow f returned by F-F is a maximum flow. from s in the residual graph is a minimum-cut.

» Since f is the final flow there are no residual paths in G/;.

> Let (A, B) be the s-t cut where A consists of all nodes reachable

from s in the residual graph. Gy
> Any edge out of A must have f(e) = c(e) otherwise there
would be more nodes than just A that reachable from s.
> Any edge into A must have f(e) = 0 otherwise there would
be more nodes than just A that reachable from s.
» Therefore o(f) = Z fle) — Z fle)
e out ofA e intoA G
= c(e) = ¢(4, B)
e out ofA
F-F finds a minimum cut Ford-Fulkerson Running Time

» Flow increases at least one unit per iteration

» F-F terminates in at most C iterations, where Cy is sum of
capacities leaving source.

» Cs < nChpax (in terms of maximum edge capacity)

» Running time: O(mn Crax)

Is this polynomial? pseudo-polynomial (exponential in log Ciyax)

AN b 0
SR

AT L

Capacity 163,000 tons per day [Harris and Ross 1955]




Ford-Fulkerson: exponential example

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?
m, n, and log C
A. No. If max capacity is C, then algorithm can take > C iterations.
sV w—t

each augmenting path
<«—— sends only 1 unit of flow
(# augmenting paths = 2C)

* sow— vt
MR gl el i 8

R i (il Vil 4

* sV w—t
. vt / \

slide credit: Kevin Wayne / Pearson

Improving Running Time

Choose good augmenting paths, with
» Large enough bottleneck capacity

Maximum hard to find, but can cleverly search for good values

> Fewest edges (Edmonds-Karp, Dinitz)

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
« Maintain scaling parameter A. though not necessarily largest
* Let Gp(A) be the part of the residual network containing
only those edges with capacity = A.
* Any augmenting path in G,(A) has bottleneck capacity = A.

& /Q) N /Q,
Q ! O Q O
2 & %, &
®© ®©
Gr Gf(A), A =100 ®

slide credit: Kevin Wayne / Pearson

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACH edge e EE : f(e) < 0.

A < largest powerof 2 < C.

WHILE (A = 1)

Gy(A) < A-residual network of G with respect to flow f.
WHILE (there exists an s~ path P in Gy(A))

f< AUGMENT(f, c, P).
Update Gr(A).
A< A/2.

A-scaling phase

RETURN f.

slide credit: Kevin Wayne / Pearson

Capacity-Scaling: Running Time

How many scaling phases? log Crax (precisely: 1+ |log Cimax])
How much does the flow increase at every augmentation? > A
How many augmentations per phase?

Intuition: at end of each A phase, residual capacity on an edge in
minimum cut less than A, else we would have augmented more.

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f)+m A.
Pf.

We show there exists a cut (4, B) such that cap(A, B) < val(f) +m A.
Choose A to be the set of nodes reachable from s in Gy(A).

By definition of A: s€ A.

By definition of flow £ t+ & A.

edge e=(v,w) withvEB,wEA
must have f(e) <A
original flow network

ml(f)/ = > fl) - > [ A 0

e out of A einto A

flow value
emma. > Y (l@)—a) - > A — .\% O]
e out of A einto A

Zc(s)sz—ZA \

e out of A e out of A einto A

cap(A,B) — mA « /

edge e=(v,w) withvEA, wEB
must have f(e) > c(e) - A

v

v

slide credit: Kevin Wayne / Pearson




Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 + |log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) +m A.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.

or equivalently,
Pf. at the end
of a 2A-scaling phase

 Let fbe the flow at the beginning of a A-scaling phase.
* Lemma 2 = max-flow value < val(f)+m (2 A).
« Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The capacity-scaling algorithm takes O(m? log C) time.
Pf.

* Lemma 1 + Lemma 3 = O(m log C) augmentations.

« Finding an augmenting path takes O(m) time. =

slide credit: Kevin Wayne / Pearson

Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACH e EE : f(e) < 0.
Gy < residual network of G with respect to flow f.
'WHILE (there exists an s~ path in Gy)
C P < BREADTH—FIRST—StARCH(G;).)
f < AUGMENT(f, ¢, P).
Update Gr.
RETURN f.

slide credit: Kevin Wayne / Pearson

Network flow: quiz 6 >

How to compute the level graph Lc efficiently?

Depth-first search.
Breadth-first search.

Both A and B.

o n R® »

Neither A nor B.

C)

source (C (E (F) sink
@ © ® ®

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.
Pf. Ahead.

number of edges
Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.
Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes O(m?n) time.
Pf.
* O(m) time to find a shortest augmenting path via BFS.
* There are < m n augmentations.
- at most m augmenting paths of length k «<— Lemma 1 + Lemma 2
- at most n—1 different lengths =

augmenting paths are simple paths

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
« L;=(V,E) is the subgraph of G that contains only those edges (v,w) EE
with ¢w) = £(v) + 1.

) )
graph G A A A
Y ) ) D)
& (% (% (O
) )
level graph Lc Ao A
) ) () )
&/ N\ N\ )
£=0 £=1 £=2 £=3

slide credit: Kevin Wayne / Pearson

Network flow: quiz 5 >

Which edges are in the level graph of the following digraph?

A. D-F.

B. E-F.

C. Both AandB.
D. Neither A nor B.

®

(®

source @ @ @ @ sink

slide credit: Kevin Wayne / Pearson




Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
« L;=(V,E) is the subgraph of G that contains only those edges (v,w) EE
with ¢w) = £(v) + 1.

Key property. P is a shortest s~v path in G iff P is an s~v path in Lg.

O )
level graph L¢ A A
X ) ) )
L4 O (% @
t=0 t=1 v=12 Y=13]

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.
« Let fand ' be flow before and after a shortest-path augmentation.
* Let L and Lg be level graphs of Gyand G,
* Only back edges added to G,
(any s~t path that uses a back edge is longer than previous length) =

level graph L¢ <> <>
[ » () » () »(7)
U > > »
£=0 =1 £=2 £=3
level graph L¢’ () ()
G ) ) )
oy — o, oy Y 53

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: analysis

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

« At least one (bottleneck) edge is deleted from L; per augmentation.

» No new edge added to L; until shortest path length strictly increases. =

level graph Lc <> <>
) » () » () »(7)
(U > > >
£=0 =1 £=2 £=3
level graph L¢’ <> <>
Y O () )
&) Y Y, @ %

slide credit: Kevin Wayne / Pearson

Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting
path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m?n) time.

slide credit: Kevin Wayne / Pearson




