

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts
Soviet rail network (Harris \& Ross, RAND report, 1955)

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002

Designing a Max-Flow Algorithm

First idea: initialize to zero flow, then repeatedly "augment" flow on paths from s to t until we can no longer do so.

Problem: we are stuck, all paths from s to t have a saturated edge.
"In dealing with the usual railway networks a single flooding,
followed by removal of bottlenecks, should lead to a maximal flow." (Boldyreff, RAND report, 1955)

We'd like to "augment" $s \xrightarrow{+1} v \stackrel{-1}{\leftarrow} u \xrightarrow{+1} t$, but this is not a real $s \rightarrow t$ path. How can we identify such an opportunity?

Clicker Question 1

Let's recall how a cut is defined:

A: A partition of graph vertices into two subsets
B: A partition of nodes so that the graph is bipartite
C: A set of edges that give a matching between two node sets
D: A set of edges between two node sets so that no two edges cross

Residual Graph

The residual graph G_{f} identifies ways to increase flow on edges with leftover capacity, or decrease flow on edges already carrying flow:

For each original edge $e=(u, v)$ in G, it has:

- A forward edge $e=(u, v)$ with residual capacity $c(e)-f(e)$
- A reverse edge $e^{\prime}=(v, u)$ with residual capacity $f(e)$

Edges with zero residual capacity are omitted

Augment Operation

Revised Idea: use paths in the residual graph to augment flow

- $P=s \rightarrow v \rightarrow u \rightarrow t$ has bottleneck capacity 1 .
- Increase flow for forward edges, decrease for backward edges.
- Augment $s \xrightarrow{+1} v \stackrel{-1}{\leftarrow} u \xrightarrow{+1} t$

Network flow: quiz 2

Which is the augmenting path of highest bottleneck capacity?
A. $A \rightarrow F \rightarrow G \rightarrow H$
B. $A \rightarrow B \rightarrow C \rightarrow D \rightarrow H$
C. $A \rightarrow F \rightarrow B \rightarrow G \rightarrow H$
D. $A \rightarrow F \rightarrow B \rightarrow G \rightarrow C \rightarrow D \rightarrow H$

Augmenting Path

G

G_{f}

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson (G, s, t)
\triangleright Initially, no flow
Initialize $f(e)=0$ for all edges e
Initialize $G_{f}=G$
\triangleright Augment flow as long as it is possible
while there exists an s - t path P in G_{f} do
$f=\operatorname{Augment}(f, P)$ update G_{f}
end while
return f

Capacity

- Suppose original edge is $e=(u, v)$
- If e appears in P as a forward edge $(u \xrightarrow{+b} v)$, then flow increases by bottleneck capacity b, at most $c(e)-f(e)$, so does not exceed $c(e)$
- If e appears in P as a reverse edge $(v \stackrel{-b}{\leftarrow} u$), then flow decreases by bottleneck capacity b, which is at most $f(e)$, so is at least 0

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow values and residual capacities remain integers during the algorithm.

Running time:

- In each F-F iteration, flow increases by at least 1. Therefore, number of iterations is at most $v\left(f^{*}\right)$, where f^{*} is the final flow.
- Let C be the total capacity of edges leaving source s.
- Then $v\left(f^{*}\right) \leq C$.
- So F-F terminates in at most C iterations

Running time per iteration? Cost of finding an augmenting path How to find one? Any graph search: $O(m+n)$

Step 1: F-F returns a flow

Claim: If f is a flow then $f^{\prime}=\operatorname{Augment}(f, P)$ is also a flow.

Proof idea. Verify two conditions for f^{\prime} to be a flow: capacity and flow conservation.

Flow Conservation

- Consider any node v in the augmenting path, and do a case analysis on the types of the incoming and outgoing edge:

$$
\begin{array}{cl}
\text { residual graph: } P=s \rightsquigarrow & u \rightarrow v \rightarrow w \rightsquigarrow t \\
\text { original graph: } & u \xrightarrow{+b} v \xrightarrow{+b} w \\
& u \xrightarrow{+b} v \stackrel{-b}{\leftarrow} w \\
& u \stackrel{-b}{\leftarrow} v \xrightarrow{+b} w \\
& u \stackrel{-b}{\leftarrow} v \stackrel{-b}{\leftarrow} w
\end{array}
$$

In all cases, the change in incoming flow to v is equal to the change in outgoing flow from v.

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- An s - t cut (A, B) is a partition of the nodes into sets A and B where $s \in A, t \in B$
- Capacity of cut (A, B) equals

$$
c(A, B)=\sum_{e \text { from } A \text { to } B} c(e)
$$

- Flow across a cut (A, B) equals

$$
f(A, B)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Example of Cut

Exercise: write capacity of cut and flow across cut.
Capacity is 29 and flow across cut is 19 .

Another Example of Cut

Exercise: write capacity of cut and flow across cut.
Capacity is 34 and flow across cut is 19 .

Network flow: quiz 1

Which is the capacity of the given st-cut?
A. $11(20+25-8-11-9-6)$
B. $34(8+11+9+6)$
C. $45(20+25)$
D. $79(20+25+8+11+9+6)$

slide credit: Kevin Wayne / Pearson
Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A, B) be any s - t cut. Then

$$
v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Proof (see book) Basic idea is to use conservation of flow: all the flow out of s must leave A eventually.

