
COMPSCI 311: Introduction to Algorithms
Lecture 15: Dynamic Programming – Shortest Paths

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Currency Trading

1

2

3

4

0.97

USD

CDN EUR

GBP

1.03
0.73

0.65 1.16

1.28

0.64

I Problem:
given directed graph with
exchange rate re on edge e,
find best exchange rate s→ t,
i.e., path P with maximum
product ∏e∈P re over edges

I Assumption (no arbitrage):
no cycles C with ∏e∈C re > 1.

Shortest Paths
I We know how to find minimum sum, not maximum product,but

I logarithm of product is sum of logs
I maximize x means minimize -x

I Let ce = − log re be the cost of edge e

I Let the path cost be the negative log of the path exchange rate.

cost(P) = − log
∏

e∈P

re

=
∑

e∈P

(− log re)

=
∑

e∈P

ce

I Equivalent problem: find the s→ t path of minimum cost

Currency Trading

1

2

3

4

0.04

USD

CDN EUR

GBP

0.46

0.62 –0.21

–0.36

0.64

–0.04

I Negative edge weights!

I Problem: given a graph with
possibly negative edge weights,
find shortest s→ t path

I Assumption: no cycle C
with ∑e∈C ce < 0. Why?

Dijkstra’s Algorithm: Negative Edge Behavior

s

x y

u v

2

2

3

1

4 -4

What is the shortest path value the algorithm finds for d(s, v) ?

Clicker Question 1

When run on a graph with negative edges, Dijkstra’s algorithm:

A: Does not give the right value if shortest path has negative edge.

B: May give the right value even if the shortest path has a negative
edge.

C: Does not give the right value if the target node is first reached
through a positive edge.

D: Gives the right value if the target node is first reached through a
negative edge.

Choose the most precise answer!

Clicker Question 2
In the following graph, which is the value of the shortest s→ t path
found by Dijkstra’s algorithm?

Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge

lengths �vw, find shortest path from source node s to destination node t.

 32

�1

8

5

7

5

4

�2

�5
12

10

13

9

length of shortest path from s to t = 9 − 3 − 6 + 11 = 11

s

4

5

t

9

�3

�6
11

assume there exists a path

from every node to t

A: 26 B: 20

C: 12 D: 11

Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node t
(single-destination shortest paths)

Like single-source, but destination more relevant e.g., in routing

Consider paths with increasing number of edges to target

Fact. If no negative cycles, shortest path has at most n− 1 edges.
Why?

Path with ≥ n edges has ≥ n + 1 nodes: would repeat some node,
thus cycle!

Clicker Question 3

For shortest paths from any v to a fixed t, we’d like to compute
OPT(i + 1, v) from OPT(i, v), by incrementing the edge count i.

If we find a better path starting with edge (v, w), we want to update

OPT(i + 1, v) = cv,w + OPT(i, w)

Should OPT(i, v) mean the optimal cost from v to t

A: on a path with i edges

B: on a path with at most i edges

Bellman-Ford Recurrence

I Let OPT(i, v) be cost of shortest v → t path with at most i
edges.

I Recursive principle: let P be the optimal v → t path using at
most i + 1 edges.
I If P uses at most i edges, then OPT(i + 1, v) = OPT(i, v).
I Else P = v → w → t where w → t path uses at most i edges.

OPT(i + 1, v) = cv,w + OPT(i, w)

OPT(i, v) = min
{

OPT(i− 1, v), min
w∈V
{cv,w + OPT(i− 1, w)}

}

Bellman-Ford Algorithm

OPT(i, v) = min
{

OPT(i− 1, v), min
w∈V
{cv,w + OPT(i− 1, w)}

}

Shortest-Path(G, s, t)
n = number of nodes in G
Create array M of size n× n
Set M [0, t] = 0 and M [0, v] =∞ for all other v
for i = 1 to n− 1 do

for all nodes v in any order do
Compute M [i, v] using the recurrence above

end for
end for

Running time? O(n3). Better analysis: O(mn).

Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).

独d[v] = length of a shortest v↝t path that we have found so far.

独successor[v] = next node on a v↝t path.

 
Performance optimization. If d[w] was not updated in iteration i – 1, 
then no reason to consider edges entering w in iteration i.

 43

slide credit: Kevin Wayne / Pearson

Bellman–Ford–Moore: efficient implementation

 44

BELLMAN–FORD–MOORE(V, E, c, t)

FOREACH node v ∈ V :

d[v] ← ∞.

successor[v] ← null.

d[t] ← 0.

FOR i = 1 TO n – 1

FOREACH node w ∈ V :

IF (d[w] was updated in previous pass)

FOREACH edge (v, w) ∈ E :

IF (d[v] > d[w] + �vw)

d[v] ← d[w] + �vw.

successor[v] ← w.

IF (no d[⋅] value changed in pass i) STOP.

pass i
O(m) time

slide credit: Kevin Wayne / Pearson

Clicker Question 4

Consider a directed graph with arbitrary edge weights.

Then, at every step of running Bellman-Ford

A: Following successor[v] pointers gives a v → t path

B: The length of the successor[v] path is d[v]

C: Both A and B

D: Neither A nor B

A: No, d[v] can be one iteration behind, if successor[v] = w same,
but d[w] just got updated.
B: No, for negative-weight cycles (next slide)

Bellman–Ford–Moore: analysis

Claim. Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v].  
 
 
Counterexample. Claim is false!

独Length of successor v↝t path may be strictly shorter than d[v].

独If negative cycle, successor graph may have directed cycles.

 52

3

4

22

1

1 3
t

9

5

d[t] = 0

d[2] = 8

d[1] = 3

d[3] = 10

d[4] = 11

consider nodes in order: t, 1, 2, 3, 4

�8

slide credit: Kevin Wayne / Pearson

Detecting Negative-Weight Cycles

We’ve seen that absent negative-weight cycles, a shortest path has
at most n− 1 edges.

Run for one extra iteration (n). If OPT(n, v) decreases for some v,
we have a negative-weight cycle! (why?)

But this is only over paths to a fixed target node t. How to cover
the entire graph?

Add dummy sink node with zero-cost edges from all nodes.
Use this as target (all nodes are predecessors, will be covered).

Detecting negative cycles

Theorem 4. Can find a negative cycle in Θ(mn) time and Θ(n2) space.

Pf.

独Add new sink node t and connect all nodes to t with 0-length edge.

独G has a negative cycle iff G ʹ has a negative cycle.

独Case 1. [OPT(n, v) = OPT(n – 1, v) for every node v]
By Lemma 7, no negative cycles.

独Case 2. [OPT(n, v) < OPT(n – 1, v) for some node v]
Using proof of Lemma 8, can extract negative cycle from v↝t path. 
(cycle cannot contain t since no edge leaves t) ▪

 64

2�3 4

5

�3

�44

�3

6

t

G′
0

0

0

0

slide credit: Kevin Wayne / Pearson

Detecting negative cycles

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.

Pf.

独Run Bellman–Ford–Moore on G ʹ for nʹ = n + 1 passes (instead of nʹ – 1).

独If no d[v] values updated in pass nʹ, then no negative cycles.

独Otherwise, suppose d[s] updated in pass nʹ.

独Define pass(v) = last pass in which d[v] was updated.

独Observe pass(s) = nʹ and pass(successor[v]) ≥ pass(v) – 1 for each v.

独Following successor pointers, we must eventually repeat a node.

独Lemma 6 ⇒ the corresponding cycle is a negative cycle. ▪
 
Remark. See p. 304 for improved version and early termination rule.  
(Tarjan’s subtree disassembly trick) 

 65

slide credit: Kevin Wayne / Pearson

