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I Problem:
given directed graph with
exchange rate re on edge e,
find best exchange rate s→ t,
i.e., path P with maximum
product ∏e∈P re over edges

I Assumption (no arbitrage):
no cycles C with ∏e∈C re > 1.

Shortest Paths
I We know how to find minimum sum, not maximum product,but

I logarithm of product is sum of logs
I maximize x means minimize -x

I Let ce = − log re be the cost of edge e

I Let the path cost be the negative log of the path exchange rate.

cost(P ) = − log
∏

e∈P

re

=
∑

e∈P

(− log re)

=
∑

e∈P

ce

I Equivalent problem: find the s→ t path of minimum cost
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I Negative edge weights!

I Problem: given a graph with
possibly negative edge weights,
find shortest s→ t path

I Assumption: no cycle C
with ∑e∈C ce < 0. Why?

Dijkstra’s Algorithm: Negative Edge Behavior
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What is the shortest path value the algorithm finds for d(s, v) ?

Clicker Question 1

When run on a graph with negative edges, Dijkstra’s algorithm:

A: Does not give the right value if shortest path has negative edge.

B: May give the right value even if the shortest path has a negative
edge.

C: Does not give the right value if the target node is first reached
through a positive edge.

D: Gives the right value if the target node is first reached through a
negative edge.

Choose the most precise answer!



Clicker Question 2
In the following graph, which is the value of the shortest s→ t path
found by Dijkstra’s algorithm?

Shortest paths with negative weights

Shortest-path problem.  Given a digraph G = (V, E), with arbitrary edge 

lengths �vw, find shortest path from source node s to destination node t. 
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Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node t
(single-destination shortest paths)

Like single-source, but destination more relevant e.g., in routing

Consider paths with increasing number of edges to target

Fact. If no negative cycles, shortest path has at most n− 1 edges.
Why?

Path with ≥ n edges has ≥ n + 1 nodes: would repeat some node,
thus cycle!

Clicker Question 3

For shortest paths from any v to a fixed t, we’d like to compute
OPT(i + 1, v) from OPT(i, v), by incrementing the edge count i.

If we find a better path starting with edge (v, w), we want to update

OPT(i + 1, v) = cv,w + OPT(i, w)

Should OPT(i, v) mean the optimal cost from v to t

A: on a path with i edges

B: on a path with at most i edges

Bellman-Ford Recurrence

I Let OPT(i, v) be cost of shortest v → t path with at most i
edges.

I Recursive principle: let P be the optimal v → t path using at
most i + 1 edges.
I If P uses at most i edges, then OPT(i + 1, v) = OPT(i, v).
I Else P = v → w → t where w → t path uses at most i edges.

OPT(i + 1, v) = cv,w + OPT(i, w)

OPT(i, v) = min
{

OPT(i− 1, v), min
w∈V
{cv,w + OPT(i− 1, w)}

}

Bellman-Ford Algorithm

OPT(i, v) = min
{

OPT(i− 1, v), min
w∈V
{cv,w + OPT(i− 1, w)}

}

Shortest-Path(G, s, t)
n = number of nodes in G
Create array M of size n× n
Set M [0, t] = 0 and M [0, v] =∞ for all other v
for i = 1 to n− 1 do

for all nodes v in any order do
Compute M [i, v] using the recurrence above

end for
end for

Running time? O(n3). Better analysis: O(mn).

Shortest paths with negative weights:  practical improvements

Space optimization.  Maintain two 1D arrays (instead of 2D array). 

独d[v] = length of a shortest v↝t path that we have found so far. 

独successor[v] = next node on a v↝t path. 

 
Performance optimization.  If d[w] was not updated in iteration i – 1, 
then no reason to consider edges entering w in iteration i.
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Bellman–Ford–Moore:  efficient implementation
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BELLMAN–FORD–MOORE(V, E, c, t)                          


FOREACH node v ∈ V :

d[v] ← ∞.

successor[v] ← null.

d[t] ← 0.

FOR i = 1 TO n – 1

FOREACH node w ∈ V :

IF (d[w] was updated in previous pass) 

FOREACH edge (v, w) ∈ E :

IF (d[v]  >  d[w] +  �vw)

d[v]  ← d[w] +  �vw.

successor[v] ← w.

IF (no d[⋅] value changed in pass i)  STOP.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

pass i 
O(m) time
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Clicker Question 4

Consider a directed graph with arbitrary edge weights.

Then, at every step of running Bellman-Ford

A: Following successor[v] pointers gives a v → t path

B: The length of the successor[v] path is d[v]

C: Both A and B

D: Neither A nor B

A: No, d[v] can be one iteration behind, if successor[v] = w same,
but d[w] just got updated.
B: No, for negative-weight cycles (next slide)

Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v].  
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v]. 

独If negative cycle, successor graph may have directed cycles.
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Detecting Negative-Weight Cycles

We’ve seen that absent negative-weight cycles, a shortest path has
at most n− 1 edges.

Run for one extra iteration (n). If OPT(n, v) decreases for some v,
we have a negative-weight cycle! (why?)

But this is only over paths to a fixed target node t. How to cover
the entire graph?

Add dummy sink node with zero-cost edges from all nodes.
Use this as target (all nodes are predecessors, will be covered).

Detecting negative cycles

Theorem 4.  Can find a negative cycle in Θ(mn) time and Θ(n2) space. 

Pf. 

独Add new sink node t and connect all nodes to t with 0-length edge. 

独G has a negative cycle iff G ʹ has a negative cycle. 

独Case 1. [ OPT(n, v) = OPT(n – 1, v) for every node v ] 
By Lemma 7, no negative cycles. 

独Case 2. [ OPT(n, v) < OPT(n – 1, v) for some node v ] 
Using proof of Lemma 8, can extract negative cycle from v↝t path. 
(cycle cannot contain t since no edge leaves t)  ▪
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Detecting negative cycles

Theorem 5.  Can find a negative cycle in O(mn) time and O(n) extra space. 

Pf. 

独Run Bellman–Ford–Moore on G ʹ for nʹ = n + 1 passes (instead of nʹ – 1). 

独If no d[v] values updated in pass nʹ, then no negative cycles. 

独Otherwise, suppose d[s] updated in pass nʹ. 

独Define pass(v) = last pass in which d[v] was updated.  

独Observe pass(s) = nʹ  and pass(successor[v]) ≥ pass(v) – 1 for each v.

独Following successor pointers, we must eventually repeat a node. 

独Lemma 6  ⇒  the corresponding cycle is a negative cycle.    ▪ 
 
Remark.  See p. 304 for improved version and early termination rule.  
(Tarjan’s subtree disassembly trick) 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