

Shortest Paths

- We know how to find minimum sum, not maximum product,but
- logarithm of product is sum of logs
- maximize \times means minimize $-x$
- Let $c_{e}=-\log r_{e}$ be the cost of edge e
- Let the path cost be the negative log of the path exchange rate.

$$
\begin{aligned}
\operatorname{cost}(P) & =-\log \prod_{e \in P} r_{e} \\
& =\sum_{e \in P}\left(-\log r_{e}\right) \\
& =\sum_{e \in P} c_{e}
\end{aligned}
$$

Equivalent problem: find the $s \rightarrow t$ path of minimum cost

Dijkstra's Algorithm: Negative Edge Behavior

What is the shortest path value the algorithm finds for $d(s, v)$?

Currency Trading

- Problem:
given directed graph with exchange rate r_{e} on edge e, find best exchange rate $s \rightarrow t$, i.e., path P with maximum product $\prod_{e \in P} r_{e}$ over edges
- Assumption (no arbitrage): no cycles C with $\prod_{e \in C} r_{e}>1$.

Currency Trading

- Negative edge weights!
- Problem: given a graph with possibly negative edge weights, find shortest $s \rightarrow t$ path
- Assumption: no cycle C with $\sum_{e \in C} c_{e}<0$. Why?

When run on a graph with negative edges, Dijkstra's algorithm:

A: Does not give the right value if shortest path has negative edge.
B: May give the right value even if the shortest path has a negative edge.

C : Does not give the right value if the target node is first reached through a positive edge.

D: Gives the right value if the target node is first reached through a negative edge.

Choose the most precise answer!

Clicker Question 2

In the following graph, which is the value of the shortest $s \rightarrow t$ path found by Dijkstra's algorithm?

A: 26
B: 20
C: 12
D: 11

Clicker Question 3

For shortest paths from any v to a fixed t, we'd like to compute $\mathrm{OPT}(i+1, v)$ from $\operatorname{OPT}(i, v)$, by incrementing the edge count i.

If we find a better path starting with edge (v, w), we want to update
$\operatorname{OPT}(i+1, v)=c_{v, w}+\operatorname{OPT}(i, w)$
Should $\operatorname{OPT}(i, v)$ mean the optimal cost from v to t

A: on a path with i edges
B: on a path with at most i edges

Bellman-Ford Algorithm

$\operatorname{OPT}(i, v)=\min \left\{\operatorname{OPT}(i-1, v), \min _{w \in V}\left\{c_{v, w}+\operatorname{OPT}(i-1, w)\right\}\right\}$

Shortest-Path (G, s, t)
$n=$ number of nodes in G
Create array M of size $n \times n$
Set $M[0, t]=0$ and $M[0, v]=\infty$ for all other v
for $i=1$ to $n-1$ do
for all nodes v in any order do
Compute $M[i, v]$ using the recurrence above
end for
end for
Running time? $O\left(n^{3}\right)$. Better analysis: $O(m n)$.

Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node t (single-destination shortest paths)
Like single-source, but destination more relevant e.g., in routing
Consider paths with increasing number of edges to target

Fact. If no negative cycles, shortest path has at most $n-1$ edges. Why?

Path with $\geq n$ edges has $\geq n+1$ nodes: would repeat some node, thus cycle!

Bellman-Ford Recurrence

- Let $\operatorname{OPT}(i, v)$ be cost of shortest $v \rightarrow t$ path with at most i edges.
- Recursive principle: let P be the optimal $v \rightarrow t$ path using at most $i+1$ edges
- If P uses at most i edges, then $\operatorname{OPT}(i+1, v)=\operatorname{OPT}(i, v)$.
- Else $P=v \rightarrow w \rightarrow t$ where $w \rightarrow t$ path uses at most i edges.

$$
\mathrm{OPT}(i+1, v)=c_{v, w}+\operatorname{OPT}(i, w)
$$

$\operatorname{OPT}(i, v)=\min \left\{\operatorname{OPT}(i-1, v), \min _{w \in V}\left\{c_{v, w}+\operatorname{OPT}(i-1, w)\right\}\right\}$

Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array)

- $d[v]=$ length of a shortest $v \rightarrow t$ path that we have found so far.
- successor $[v]=$ next node on a $v \rightarrow t$ path.

Performance optimization. If $d[w]$ was not updated in iteration $i-1$, then no reason to consider edges entering w in iteration i.

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the stecessorly] pointers gives a directed path from v to t of length $d[v]$.

Counterexample. Claim is false!

- Length of successor $v \rightarrow t$ path may be strictly shorter than $d[v]$.
- If negative cycle, successor graph may have directed cycles.
consider nodes in order: $\mathrm{t}, \mathbf{1 , 2 , 3 , 4}$

slide credit: Kevin Wayne / Pearson

Detecting negative cycles

Theorem 4. Can find a negative cycle in $\Theta(m n)$ time and $\Theta\left(n^{2}\right)$ space. Pf.

- Add new sink node t and connect all nodes to t with 0 -length edge.
- G has a negative cycle iff G^{\prime} has a negative cycle.
- Case 1. [$O P T(n, v)=O P T(n-1, v)$ for every node v] By Lemma 7, no negative cycles.
- Case 2. [$O P T(n, v)<O P T(n-1, v)$ for some node v] Using proof of Lemma 8, can extract negative cycle from $v \rightarrow t$ path. (cycle cannot contain t since no edge leaves t) -

Clicker Question 4

Consider a directed graph with arbitrary edge weights.
Then, at every step of running Bellman-Ford

A: Following successor[v] pointers gives a $v \rightarrow t$ path
B : The length of the successor[v] path is $\mathrm{d}[\mathrm{v}$]
C: Both A and B
D: Neither A nor B
A: No, $\mathrm{d}[\mathrm{v}]$ can be one iteration behind, if successor $[\mathrm{v}]=\mathrm{w}$ same, but $\mathrm{d}[\mathrm{w}]$ just got updated.
B: No, for negative-weight cycles (next slide)

Detecting Negative-Weight Cycles

We've seen that absent negative-weight cycles, a shortest path has at most $n-1$ edges.

Run for one extra iteration (n). If OPT(n, v) decreases for some v , we have a negative-weight cycle! (why?)

But this is only over paths to a fixed target node t. How to cover the entire graph?

Add dummy sink node with zero-cost edges from all nodes. Use this as target (all nodes are predecessors, will be covered).

Detecting negative cycles

Theorem 5. Can find a negative cycle in $O(m n)$ time and $O(n)$ extra space. Pf.

- Run Bellman-Ford-Moore on G^{\prime} for $n^{\prime}=n+1$ passes (instead of $n^{\prime}-1$).
- If no $d[v]$ values updated in pass n^{\prime}, then no negative cycles.
- Otherwise, suppose $d[s]$ updated in pass n^{\prime}.
- Define pass $(v)=$ last pass in which $d[v]$ was updated.
- Observe $\operatorname{pass}(s)=n^{\prime}$ and $\operatorname{pass}(\operatorname{successor}[v]) \geq \operatorname{pass}(v)-1$ for each v.
- Following successor pointers, we must eventually repeat a node.
- Lemma $6 \Rightarrow$ the corresponding cycle is a negative cycle. -

Remark. See p. 304 for improved version and early termination rule. (Tarjan's subtree disassembly trick)

