Currency Trading

COMPSCI 311: Introduction to Algorithms
Lecture 15: Dynamic Programming — Shortest Paths > Problem:
given directed graph with
exchange rate r. on edge e,
find best exchange rate s — t,
i.e., path P with maximum

product [[.cp re over edges

Marius Minea

University of Massachusetts Amherst

» Assumption (no arbitrage):
no cycles C' with [ .core > 1.

slides credit: Dan Sheldon (adapted)

Shortest Paths Currency Trading
» We know how to find minimum sum, not maximum product,but

» logarithm of product is sum of logs
» maximize x means minimize -x

» Let ¢ = —log . be the cost of edge e > Negative edge weights!

» Problem: given a graph with
possibly negative edge weights,
find shortest s — t path

» Let the path cost be the negative log of the path exchange rate.

cost(P) = —log H Te
ecP

= Z(—logre)

ecP

~Ye

ecP

» Assumption: no cycle C
with >7 coce < 0. Why?

» Equivalent problem: find the s — ¢ path of minimum cost

Dijkstra's Algorithm: Negative Edge Behavior Clicker Question 1

When run on a graph with negative edges, Dijkstra's algorithm:

A: Does not give the right value if shortest path has negative edge.

B: May give the right value even if the shortest path has a negative
edge.

C: Does not give the right value if the target node is first reached
through a positive edge.

D: Gives the right value if the target node is first reached through a
What is the shortest path value the algorithm finds for d(s,v) ? negative edge.

Choose the most precise answer!




Clicker Question 2

In the following graph, which is the value of the shortest s — ¢ path
found by Dijkstra's algorithm?

T Q" 7 —G’K 9
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o

A: 26 B: 20

C: 12 D: 11

Bellman-Ford Algorithm: Setup

Consider shortest paths from any node to a given target node ¢
(single-destination shortest paths)

Like single-source, but destination more relevant e.g., in routing

Consider paths with increasing number of edges to target

Fact. If no negative cycles, shortest path has at most n — 1 edges.
Why?

Path with > n edges has > n + 1 nodes: would repeat some node,
thus cycle!

Clicker Question 3

For shortest paths from any v to a fixed ¢, we'd like to compute
OPT(i + 1,v) from OPT(i,v), by incrementing the edge count i.

If we find a better path starting with edge (v, w), we want to update
OPT(i + 1,v) = ¢y + OPT(4, w)

Should OPT(i,v) mean the optimal cost from v to ¢

A: on a path with ¢ edges

B: on a path with at most i edges

Bellman-Ford Recurrence

» Let OPT(i,v) be cost of shortest v — ¢ path with at most ¢
edges.

» Recursive principle: let P be the optimal v — t path using at
most 7 + 1 edges.

» |If P uses at most i edges, then OPT(i + 1,v) = OPT(i,v).
» Else P =v — w — t where w — t path uses at most i edges.

OPT(i + 1,v) = ¢y + OPT (i, w)

OPT(i, v) = min {OPT(@' ~1,0), minfeuy + OPT(i - Lw)}}
we

Bellman-Ford Algorithm

OPT(i,v) = min {OPT(i —1,v), mig{cv,w +OPT(i — 1, w)}}
we

Shortest-Path(G, s, t)
n = number of nodes in G
Create array M of sizen xn
Set M(0,t] = 0 and M0, v] = oo for all other v
fori=1ton—1do
for all nodes v in any order do
Compute M[i, v] using the recurrence above
end for
end for

Running time? O(n?). Better analysis: O(mn).

Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).
* d[v] = length of a shortest v~¢ path that we have found so far.
* successor[v] = next node on a v~t path.

Performance optimization. If d[w] was not updated in iteration i1,
then no reason to consider edges entering w in iteration i.
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Bellman-Ford-Moore: efficient implementation

BELLMAN-FORD-MOORE(V, E, ¢, f)

FOREACH node vE V:

d[v] < .

successor[v] <= null.
d[t] < 0.
Fori=1TORN-1

FOREACH node w € V' :

IF (d[w] was updated in previous pass)
FOREACH edge (v, w) EE :

pass i
O(m) time

IF (d[v] > dlw]+ L,,)
dlv] <dw]+ ¢,,.

successor[v] <= w.

IF (no d[] value changed in pass i) STOP.
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Clicker Question 4

Consider a directed graph with arbitrary edge weights.

Then, at every step of running Bellman-Ford

A: Following successor|v] pointers gives a v — ¢ path
B: The length of the successor|[v] path is d[v]

C: Both A and B

D: Neither A nor B

A: No, d[v] can be one iteration behind, if successor[v] = w same,
but d[w] just got updated.
B: No, for negative-weight cycles (next slide)

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman—Ford—Moore, following the successor[v}
pointers-gives-a directed path from v to r of length-d[v].

Counterexample. Claim is false!
- If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3, 4

d[3]=10

d[t]=0
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Detecting Negative-Weight Cycles

We've seen that absent negative-weight cycles, a shortest path has
at most n — 1 edges.

Run for one extra iteration (n). If OPT(n, v) decreases for some v,
we have a negative-weight cycle! (why?)

But this is only over paths to a fixed target node ¢. How to cover
the entire graph?

Add dummy sink node with zero-cost edges from all nodes.
Use this as target (all nodes are predecessors, will be covered).

Detecting negative cycles

Theorem 4. Can find a negative cycle in ©(mn) time and ©(»2) space.
Pf.
« Add new sink node t and connect all nodes to ¢ with 0-length edge.
* G has a negative cycle iff G’ has a negative cycle.

* Case 1. [ OPT(n,v) = OPT(n—-1,v) for every node v]
By Lemma 7, no negative cycles.
* Case 2. [ OPT(n,v) < OPT(n - 1,v) for some node v]

Using proof of Lemma 8, can extract negative cycle from v~t path.
(cycle cannot contain ¢ since no edge leaves 1) =

/]
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/
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Detecting negative cycles

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.
Pf.

Run Bellman-Ford-Moore on G’ for n' = n+ 1 passes (instead of n' - 1).

If no d[v] values updated in pass »’, then no negative cycles.

Otherwise, suppose d[s] updated in pass »'.

Define pass(v) = last pass in which d[v] was updated.

Observe pass(s) =n' and pass(successor[v]) = pass(v) — 1 for each v.

Following successor pointers, we must eventually repeat a node.
Lemma 6 = the corresponding cycle is a negative cycle. =

Remark. See p. 304 for improved version and early termination rule.
(Tarjan’s subtree disassembly trick)
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