
COMPSCI 311: Introduction to Algorithms
Lecture 14: Dynamic Programming – Sequence Alignment

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon (adapted)

Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm

Flavor: make “first choice”,
then recursively solve remaining part of the problem

Step 2: Write recurrence for optimal value

Step 3: Design bottom-up iterative algorithm

I Weighted interval scheduling: first-choice is binary
I Rod-cutting: first choice has n options
I Subset Sum: need to “add a variable” (one more dimension)

Today: similarity between sequences

A Simple Case: Minimum Edit Distance

How many edits to go from PLEASANT to PRESENT ?

Levenshtein distance: an edit is
I substituting a letter
I deleting a letter
I inserting a letter

Application: spelling correction

“preffered”: (0) proffered (1) preferred (2) referred . . .

Dynamic Time Warping
Measure similarity between two temporal sequences

Speech recognition, speaker recognition, gait recognition

Testing embedded systems (sensor response profile,
behavior in given scenario, e.g., braking)

Source: https://en.wikipedia.org/wiki/Dynamic_time_warping

Sequence Alignment: Motivation

I Biologists use genetic similarity to determine evolutionary
relationships.

I How do we evaluate if two gene sequences are similar or not,
and how similar they are ?

I We align them: Needleman-Wunsch algorithm (global alignment)
Also: Smith-Waterman for local alignment (similar regions),
not discussed here

I Need efficiency for long sequences

I Also used in spell-checkers, diff program, search engines.

Sequence Alignment: Definition
Example. TAIL vs TALE
I For two strings X = x1x2 . . . xm, Y = y1y2 . . . yn, an alignment
M is a matching between {1, . . . ,m} and {1, . . . , n}.

I M is valid if
I Matching. Each element appears in at most one pair in M .
I No crossings. If (i, j), (k, `) ∈M and i < k, then j < `.

I Cost of M :
I Gap penalty. For each unmatched character, you pay δ.
I Alignment cost. For a match (i, j), you pay C(xi, yj).

(in general, depends on the pair of mismatched symbols)

cost(M) = δ(m+ n− 2|M |) +
∑

(i,j)∈M

C(xi, yj).

Sequence Alignment: Running Example

Problem. Given strings X,Y gap-penalty δ and cost matrix C,
find valid alignment of minimal cost.

Example 1. TAIL vs TALE, δ = 0.5, C(x, y) = 1[x 6= y].

TAIL- I not matched
TA-LE E not matched

Example 2. TAIL vs TALE, δ = 5, C(x, y) = 1[x 6= y].

TAIL
TALE

Clicker Question 1

Consider the longest common subsequence (LCS) problem:
given two sequences of symbols, find the longest
(not necessarily contiguous) sequence that belongs to both

A: LCS is a special case of sequence alignment, gap penalty δ = 0,
mismatch cost 1 for different symbols

B: LCS is a special case of sequence alignment, gap penalty δ = 1,
mismatch cost ∞ for different symbols

C: LCS is a special case of sequence alignment, gap penalty δ = 0,
mismatch cost ∞ for different symbols

D: LCS cannot be defined as special case of sequence alignment

Toward an Algorithm

I Try what we did before: Let O be optimal alignment.
I If (m,n) ∈ O we can align x1x2...xm−1 with y1y2...yn−1.
I If (m,n) /∈ O then either xm or yn must be unmatched

(if both were matched, we’d have a crossing).

I Value OPT(m,n) of optimal alignment is either:
I C(xm, yn) + OPT(m− 1, n− 1), If (m,n) matched
I δ + OPT(m− 1, n), If m unmatched
I δ + OPT(m,n− 1). If n unmatched

Recurrence

Let OPT(i, j) be optimal alignment cost of x1x2...xi and y1y2...yj .

OPT(i, j) = min





C(xi, yj) + OPT(i− 1, j − 1)
δ + OPT(i− 1, j)
δ + OPT(i, j − 1)





And (i, j) is in optimal alignment iff first term is the minimum.

Clicker Question 2

Suppose we try to align “banana” with “ana” (occurs twice).
The optimal alignment should be with

A: the first match

B: the second match

C: any of the matches

D: depends on the gap and letter mismatch penalties

Sequence Alignment Pseudocode

align(X,Y)
Initialize M[0..m,0..n] = null.
M[i,0] = iδ, M[0,j] = jδ for all i, j.
for j = 1, . . . , n do

for i = 1, . . . ,m do
v1 = C(xi, yj) +M [i− 1, j − 1].
v2 = δ +M [i− 1, j].
v3 = δ +M [i, j − 1].
M[i,j] ← min{v1, v2, v3}.

Example. TALE and TAIL, δ = 1, C(x, y) = 2 · 1[x 6= y].

Sequence Alignment

I Running time is O(mn).
I Computing optimal matching is easy.
I Related to shortest path in weighted directed graph.

y1 y2

x1

x2

x3

Graph has ∼ mn nodes and ∼ 3mn edges.

Clicker Question 3

Dijkstra’s shortest-path algorithm runs in O(|E| log |V |).
Sequence alignment runs in O(mn) on a graph with O(mn) nodes
and edges.

What can we derive from here?

A: We could do shortest paths faster with dynamic programming

B: The log |V | does not matter compared to O(|E|)
C: The graph in sequence alignment is a special case

D: Dijkstra’s algorithm works on undirected graphs

Can We Use Less Space?

So far we’ve focused on time complexity

But space matters too!

Two sequences of length 105 each: 1010 (10 GB)

OPT(i, j) = min





C(xi, yj) + OPT(i− 1, j − 1)
δ + OPT(i− 1, j)
δ + OPT(i, j − 1)





Computing column C(·, j) only requires column C(·, j − 1)
⇒ can keep only two columns (curr, prev), linear space

But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Time

Hirschberg’s algorithm: Divide and Conquer

Approach problem from both ends: forward and backward

Denote: f(i, j) = cost of shortest path from (0, 0) to (i, j) in
alignment graph (solution so far)

Define g(i, j) = cost of shortest path from (i, j) to (m,n)

g(i, j) = min





C(xi+1, yj+1) + OPT(i+ 1, j + 1)
δ + g(i+ 1, j)
δ + g(i, j + 1)





Same recurrence, but going backward ⇒ meet in the middle

Edit distance graph.

独Let f (i, j) denote length of shortest path from (0,0) to (i, j).

独Lemma: f (i, j) = OPT(i, j) for all i and j.

独Can compute f (·, j) for any j in O(mn) time and O(m + n) space.

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε

m–n

0–0

y4

Hirschberg’s algorithm

 17

0–0

j

i–j

slide credit: Kevin Wayne / Pearson

Edit distance graph.

独Let g(i, j) denote length of shortest path from (i, j) to (m, n).

独Can compute g(·, j) for any j in O(mn) time and O(m + n) space.

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε y4

m–n

0–0

Hirschberg’s algorithm

m–n
 20

j

i–j

slide credit: Kevin Wayne / Pearson

How to Divide and Conquer ?

Fact 1 The length of the shortest path through any point (i, j)
from (0, 0) to (m,n) is f(i, j) + g(i, j)
(shortest path has optimal substructure)

⇒ can split in two parts at some point (i, j) – which ?

Fact 2 Fix a column k, 0 < k < n and minimize f(q, k) + g(q, k)
over all 0 ≤ q ≤ m.
Then the shortest path from (0, 0) to (m,n) passes through (q, k).

Observation 2. let q be an index that minimizes f(q, n / 2) + g (q, n / 2). 
Then, there exists a shortest path from (0, 0) to (m, n) that uses (q, n / 2).

x1

x2

y1

x3

y2 y5 y6

ε

ε y4

m–n

0–0

m–n

0–0

Hirschberg’s algorithm

n / 2

q

 22

y3

i–j

slide credit: Kevin Wayne / Pearson

Divide. Find index q that minimizes f (q, n / 2) + g (q, n / 2); save node i–j as

part of solution.

 
Conquer. Recursively compute optimal alignment in each piece.

x1

x2

x3

y2 y5 y6

ε

y4

m–n

0–0

Hirschberg’s algorithm

 23

n / 2

q

m–n

0–0

i–j

y3y1ε

slide credit: Kevin Wayne / Pearson

Hirschberg’s Linear-Space Algorithm

align(X,Y)
if m < 2 or n < 2 then solve directly
Compute f(:, n/2) and g(:, n/2) in linear space
Find q minimizing f(q, n/2) + g(q, n/2).
Store pair (q, n/2) . part of alignment
align(X[0:q], Y[0:n/2])
align(X[q+1:m], Y[n/2+1:n]) . reuse memory

What is the recurrence for memory usage?

f(:, n/2) and g(:, n/2) are O(m) each, discarded after finding q.

Splitting in half on larger of m,n (above: assumed n) needs space
O(min(m,n))

Complexity Analysis

Recurrence

O(mn) work to build array of alignment costs

T (m,n) ≤ c ·mn+ T (q, n/2) + T (m− q, n/2)

Two-dimensional recurrence, don’t know q.

Intuition: simplified case m = n and assuming q = n/2,
we get T ′(n) ≤ cn2 + 2T ′(n/2), for T ′(n) = T (n, n)
This solves to T ′(n) = O(n2)

Can guess T (m,n) ≤ k ·mn, prove by induction

Sequence Alignment: Summary

Problem structure: simple
Memory requirement: more subtle
DP + Divide and Conquer

More sequences:
RNA secondary structure
match maximum number of bases
problem substructure:
over intervals

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 273

U A
C

G

G

C

A
G C

A G

C

A U

G

G

A

C

C

U

G

C

A

U
C

A

G
G

CG
A

U

A

U

U

A
G

G

A
C

U

A
G C

A

A

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

The Problem
As one learns in introductory biology classes, Watson and Crick posited that
double-stranded DNA is “zipped” together by complementary base-pairing.
Each strand of DNA can be viewed as a string of bases, where each base is
drawn from the set {A, C , G, T}.2 The bases A and T pair with each other, and
the bases C and G pair with each other; it is these A-T and C-G pairings that
hold the two strands together.

Now, single-stranded RNA molecules are key components in many of
the processes that go on inside a cell, and they follow more or less the
same structural principles. However, unlike double-stranded DNA, there’s no
“second strand” for the RNA to stick to; so it tends to loop back and form
base pairs with itself, resulting in interesting shapes like the one depicted in
Figure 6.13. The set of pairs (and resulting shape) formed by the RNA molecule
through this process is called the secondary structure, and understanding
the secondary structure is essential for understanding the behavior of the
molecule.

2 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.

