| COMPSCI 311: Introduction to Algorithms |
| :--- |
| Lecture 14: Dynamic Programming - Sequence Alignment |
| Marius Minea |
| University of Massachusetts Amherst |

## A Simple Case: Minimum Edit Distance

How many edits to go from PLEASANT to PRESENT ?
Levenshtein distance: an edit is

- substituting a letter
- deleting a letter
- inserting a letter

Application: spelling correction
"preffered": (0) proffered (1) preferred (2) referred ...

## Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm
Flavor: make "first choice",
then recursively solve remaining part of the problem
Step 2: Write recurrence for optimal value
Step 3: Design bottom-up iterative algorithm

- Weighted interval scheduling: first-choice is binary
- Rod-cutting: first choice has $n$ options
- Subset Sum: need to "add a variable" (one more dimension)

Today: similarity between sequences

## Dynamic Time Warping

Measure similarity between two temporal sequences


Speech recognition, speaker recognition, gait recognition
Testing embedded systems (sensor response profile, behavior in given scenario, e.g., braking)

## Sequence Alignment: Definition

Example. TAIL vs TALE

- For two strings $X=x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, an alignment $M$ is a matching between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$.
- $M$ is valid if
- Matching. Each element appears in at most one pair in $M$.
- No crossings. If $(i, j),(k, \ell) \in M$ and $i<k$, then $j<\ell$.
- Cost of $M$ :
- Gap penalty. For each unmatched character, you pay $\delta$.
- Alignment cost. For a match $(i, j)$, you pay $C\left(x_{i}, y_{j}\right)$. (in general, depends on the pair of mismatched symbols)

$$
\operatorname{cost}(M)=\delta(m+n-2|M|)+\sum_{(i, j) \in M} C\left(x_{i}, y_{j}\right)
$$

## Sequence Alignment: Running Example

Problem. Given strings $X, Y$ gap-penalty $\delta$ and cost matrix $C$, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta=0.5, C(x, y)=\mathbf{1}[x \neq y]$.
TAIL- I not matched
TA-LE E not matched
Example 2. TAIL vs TALE, $\delta=5, C(x, y)=\mathbf{1}[x \neq y]$.
TAIL
TALE

## Clicker Question 1

Consider the longest common subsequence (LCS) problem: given two sequences of symbols, find the longest (not necessarily contiguous) sequence that belongs to both

A: LCS is a special case of sequence alignment, gap penalty $\delta=0$, mismatch cost 1 for different symbols

B: LCS is a special case of sequence alignment, gap penalty $\delta=1$, mismatch cost $\infty$ for different symbols

C: LCS is a special case of sequence alignment, gap penalty $\delta=0$, mismatch cost $\infty$ for different symbols

D: LCS cannot be defined as special case of sequence alignment

## Toward an Algorithm

- Try what we did before: Let $O$ be optimal alignment.
- If $(m, n) \in O$ we can align $x_{1} x_{2} \ldots x_{m-1}$ with $y_{1} y_{2} \ldots y_{n-1}$.
- If $(m, n) \notin O$ then either $x_{m}$ or $y_{n}$ must be unmatched (if both were matched, we'd have a crossing).
- Value $\operatorname{OPT}(m, n)$ of optimal alignment is either:
- $C\left(x_{m}, y_{n}\right)+\operatorname{OPT}(m-1, n-1), \quad$ If $(m, n)$ matched
- $\delta+\operatorname{OPT}(m-1, n)$,
- $\delta+\operatorname{OPT}(m, n-1)$. $m$ unmatched If $n$ unmatched


## Clicker Question 2

Suppose we try to align "banana" with "ana" (occurs twice).
The optimal alignment should be with

A: the first match
B: the second match
C: any of the matches
D: depends on the gap and letter mismatch penalties

## Recurrence

Let $\operatorname{OPT}(i, j)$ be optimal alignment cost of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$

$$
\operatorname{OPT}(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i}, y_{j}\right)+\operatorname{OPT}(i-1, j-1) \\
\delta+\operatorname{OPT}(i-1, j) \\
\delta+\operatorname{OPT}(i, j-1)
\end{array}\right\}
$$

And $(i, j)$ is in optimal alignment iff first term is the minimum.

## Sequence Alignment Pseudocode

```
align(X,Y)
    Initialize \(M[0 . . \mathrm{m}, 0 . \mathrm{n}]=\mathrm{null}\).
    \(\mathrm{M}[\mathrm{i}, 0]=i \delta, \mathrm{M}[0, \mathrm{j}]=j \delta\) for all \(i, j\).
    for \(j=1, \ldots, n\) do
        for \(i=1, \ldots, m\) do
            \(v_{1}=C\left(x_{i}, y_{j}\right)+M[i-1, j-1]\).
            \(v_{2}=\delta+M[i-1, j]\).
            \(v_{3}=\delta+M[i, j-1]\).
            \(\mathrm{M}[\mathrm{i}, \mathrm{j}] \leftarrow \min \left\{v_{1}, v_{2}, v_{3}\right\}\).
```

    Example. TALE and TAIL, \(\delta=1, C(x, y)=2 \cdot \mathbf{1}[x \neq y]\).
    
## Sequence Alignment

- Running time is $O(m n)$.
- Computing optimal matching is easy.
- Related to shortest path in weighted directed graph.


Graph has $\sim m n$ nodes and $\sim 3 m n$ edges.

## Can We Use Less Space?

So far we've focused on time complexity
But space matters too!
Two sequences of length $10^{5}$ each: $10^{10}$ (10 GB)

$$
\operatorname{OPT}(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i}, y_{j}\right)+\operatorname{OPT}(i-1, j-1) \\
\delta+\operatorname{OPT}(i-1, j) \\
\delta+\operatorname{OPT}(i, j-1)
\end{array}\right\}
$$

Computing column $C(\cdot, j)$ only requires column $C(\cdot, j-1)$ $\Rightarrow$ can keep only two columns (curr, prev), linear space

But: can only compute cost, not recover alignment!

## Hirschberg's algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to $(i, j)$.
- Lemma: $f(i, j)=O P T(i, j)$ for all $i$ and $j$.
- Can compute $f(\cdot, j)$ for any $j$ in $O(m n)$ time and $O(m+n)$ space.



## Clicker Question 3

Dijkstra's shortest-path algorithm runs in $O(|E| \log |V|)$.
Sequence alignment runs in $O(m n)$ on a graph with $O(m n)$ nodes and edges.

What can we derive from here?

A: We could do shortest paths faster with dynamic programming
B: The $\log |V|$ does not matter compared to $O(|E|)$
C : The graph in sequence alignment is a special case
D: Dijkstra's algorithm works on undirected graphs

## Sequence Alignment in Linear Time

## Hirschberg's algorithm: Divide and Conquer

Approach problem from both ends: forward and backward
Denote: $f(i, j)=$ cost of shortest path from $(0,0)$ to $(i, j)$ in alignment graph (solution so far)
Define $g(i, j)=$ cost of shortest path from $(i, j)$ to $(m, n)$

$$
g(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i+1}, y_{j+1}\right)+\mathrm{OPT}(i+1, j+1) \\
\delta+g(i+1, j) \\
\delta+g(i, j+1)
\end{array}\right\}
$$

Same recurrence, but going backward $\Rightarrow$ meet in the middle

## Hirschberg's algorithm

Edit distance graph.

- Let $g(i, j)$ denote length of shortest path from $(i, j)$ to $(m, n)$.
- Can compute $g(\cdot, j)$ for any $j$ in $O(m n)$ time and $O(m+n)$ space.



## How to Divide and Conquer ?

Fact 1 The length of the shortest path through any point $(i, j)$
from $(0,0)$ to $(m, n)$ is $f(i, j)+g(i, j)$
(shortest path has optimal substructure)
$\Rightarrow$ can split in two parts at some point $(i, j)$ - which ?

Fact 2 Fix a column $k, 0<k<n$ and minimize $f(q, k)+g(q, k)$ over all $0 \leq q \leq m$.
Then the shortest path from $(0,0)$ to $(m, n)$ passes through $(q, k)$.

## Hirschberg's algorithm

Divide. Find index $q$ that minimizes $f(q, n / 2)+g(q, n / 2)$; save node $i-j$ as part of solution.

Conquer. Recursively compute optimal alignment in each piece.


## Complexity Analysis

## Recurrence

$O(m n)$ work to build array of alignment costs
$T(m, n) \leq c \cdot m n+T(q, n / 2)+T(m-q, n / 2)$
Two-dimensional recurrence, don't know $q$.
Intuition: simplified case $m=n$ and assuming $q=n / 2$,
we get $T^{\prime}(n) \leq c n^{2}+2 T^{\prime}(n / 2)$, for $T^{\prime}(n)=T(n, n)$
This solves to $T^{\prime}(n)=O\left(n^{2}\right)$
Can guess $T(m, n) \leq k \cdot m n$, prove by induction

## Hirschberg's algorithm

Observation 2. let $q$ be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, there exists a shortest path from $(0,0)$ to $(m, n)$ that uses $(q, n / 2)$.


Hirschberg's Linear-Space Algorithm

```
\(\operatorname{align}(X, Y)\)
    if \(\mathrm{m}<2\) or \(\mathrm{n}<2\) then solve directly
    Compute \(f(:, n / 2)\) and \(g(:, n / 2)\) in linear space
    Find \(q\) minimizing \(f(q, n / 2)+g(q, n / 2)\).
    Store pair \((q, n / 2) \quad \triangleright\) part of alignment
    align(X[0:q], Y[0:n/2])
    \(\operatorname{align}(X[q+1: m], Y[n / 2+1: n]) \quad \triangleright\) reuse memory
```

What is the recurrence for memory usage?
$f(:, n / 2)$ and $g(:, n / 2)$ are $O(m)$ each, discarded after finding $q$.
Splitting in half on larger of $m, n$ (above: assumed $n$ ) needs space $O(\min (m, n))$

## Sequence Alignment: Summary

Problem structure: simple
Memory requirement: more subtle DP + Divide and Conquer

More sequences:
RNA secondary structure
match maximum number of bases
problem substructure:
over intervals


