COMPSCI 311: Introduction to Algorithms

Lecture 13: Dynamic Programming

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Dynamic Programming Recipe

» Step 1: Devise simple recursive algorithm

» Flavor: make “first choice”, then recursively solve remaining
part of the problem

» Step 2: Write recurrence for optimal value

v

Step 3: Design bottom-up iterative algorithm

v

Weighted interval scheduling: first-choice is binary
Rod-cutting: first choice has n options
Subset Sum: need to “add a variable” (one more dimension)

vy

Subset Sum: Problem Formulation

> Input

» ltems 1,2,...,n
> Weights w; for all items (integers)
» Capacity W

» Goal: select a subset S whose total weight is as large as possible
without exceeding W.

» Subset Sum: need to “add a variable” to recurrence

Step 1: Recursive Algorithm, First Try
» Let O be optimal solution on items 1 through j. Is j € O or not?

> SubsetSum(j)
if j = 0 then return 0
>Casel: j¢ 0
vmax = SubsetSum(j-1)
> Case 2: j €O
if w; < W then > else skip, can't fit w;
vmax = max(vmax, ?? w; + SubsetSum(j-1) ??)
end if
return vmax

»> What doesn't work?
Second call to SubsetSum(j-1) no longer has capacity W.
Solution: must add extra parameter (problem dimension)

Step 1: Recursive Algorithm, Add a Variable

» Find value of optimal solution O on items {1,2,...,5}
when the remaining capacity is w

» SubsetSum(j,w)
if j =0 then return 0
> Case 1: j ¢ O
vmax = SubsetSum(j — 1, w)
>Case2: j€O
if w; < w then
vmax = max(vmax, w; + SubsetSum(j — 1, w — wy))
end if
return vmax

Recurrence

> Let OPT(j, w) be the maximum weight of any subset of items
{1,...,7} that does not exceed w

OPT(j — 1,w) w; > w

OPT(j — 1,w)

OPT(y, =
Uy w) max g wj < w
wj + OPT(j — 1, w — wy) J =

» Base case: OPT(0,w) =0 for all w=0,1,...,W.

» Questions

» Do we need a base case for OPT(j,0)?
» What is overall optimum to original problem? OPT(n, W)

Step 3: lterative Algorithm

SubsetSum(n, W)
Initialize array M0..n,0..W]
Set M[0,w] =0 forw=0,..., W
for j =1 ton do
for w=1to W do
if w; > w then M[j,w] = M[j — 1,w]
else M[j,w] = max(M[j — 1,w],w; + M[j — 1,w — w;])
end for
end for
return M[n, W]

» Running Time? ©(nW). Note: this is “pseudopolynomial”.
Not strictly polynomial, because it can be exponential in the
number of bits used to represent the values.

Polynomial vs. pseudo-polynomial

» So far, we've expressed complexity depending on problem size
(n, [V, |E])

» For numbers involved (sorted array elements, edge weights, etc.),
we assumed comparison, addition, etc., take constant time

» Actually, these operations depend on bit width: addition is linear,
multiplication is quadratic (or better: fast multiply), etc.

» For subset sum, W appears as factor in complexity, O(nW)
But W is exponential in the number of bits used to represent W,
thus the difference!

Clicker Question 1

for j =1 ton do
for w=1to W do
if w; > w then M[j,w] = M[j — 1,w]
else M[j,w] = max(M[j — 1,w],w; + M[j — 1, w — wj])
end for
end for

In the computation above, can | switch outer and inner loops
(outer j, inner w — outer w, inner j)

A: Yes
B: No

Knapsack Problem

Introduce an additional parameter, value
> Input

> ltems 1,2,...,n

» Weights w; for all items (integers)
> Values v; for all items (integers)
» Capacity W

» Goal: select a subset S whose total value is as large as possible
without exceeding W.

» Does the solution change 7

Clicker Question 2

Recall recurrence for subset sum: OPT(j, w)
_ OPT(j — 1,w) w; > w
| max(OPT(j — 1, w),w; + OPT(j — L,w —w;) w; <w

The solution for the knapsack problem
A: Requires an additional dimension for values
B: Is still two-dimensional, but its complexity increases

C: Is still two-dimensional, with same complexity

Same solution, just add values v; + OPT ... instead of weights

Clicker Question 3

How does the solution to the knapsack problem change if we
consider reals instead of integers?

A: Same for real weights and values
B: Same for real values, different for real weights

C: Same for real weights, different for real values

Least squares

Least squares. Foundational problem in statistics.
« Given n points in the plane: (xi,y1), (x2,32) , ..., (Xu, Yn)-
* Find a line y = ax + b that minimizes the sum of the squared error:

n

SSE =Y (y; — az; — b)?

i=1

Solution. Calculus = min error is achieved when

ny@iyi — (Lie) (i), _ Xavi— ey

a = N

nysaf = (2 w)? n

slide credit: Kevin Wayne / Pearson

Segmented least squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane: (xi,y1), (x2,2) , ..., (Xn, yo) With
X1 <x2<...< X find a sequence of lines that minimizes f(x).

Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

goodness of fit number of lines

slide credit: Kevin Wayne / Pearson

Segmented least squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane: (xi,y1), (x2,2) , ..., (Xa, ya) With
X1 <x2<...<x, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) = E + ¢ L for some constant ¢ >0, where
* E =sum of the sums of the squared errors in each segment.
* L = number of lines.

slide credit: Kevin Wayne / Pearson

Dynamic programming: multiway choice

Notation.
* OPT(j) = minimum cost for points pi,p2, ...,pj.
e = SSE for for points pi, pi+1, ..., pj.

To compute OPT(j):
* Last segment uses points pi, pis1, ...,p; for some i<j.

* Cost=ej + ¢ + OPT(i-1). <— optimal substructure property
(proof via exchange argument)

Bellman equation.

0 ifj=0

min {e; +c+OPT(i—1)} ifj>0
1<i<j

OPT(j) =

slide credit: Kevin Wayne / Pearson

Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES(n, p1, ..., Pn,)
FOR j=1TO n
FOR i=1TO j

Compute the SSE e;; for the points pi, pis1, ..., pj.

M[0] < 0.
For j=1T0 n

previously computed value

M[jl< min <isj {ej +c+M[i—1]}.

RETURN M[n].

slide credit: Kevin Wayne / Pearson

Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares
problem in O(#*) time and O(n?) space.

Pf.
* Bottleneck = computing SSE ¢; for each i and j.

n 3 Yk — (g o)k Uk) b — Dok Yk — Qi Dy Tk
nY 22 — (3, zk)? b Y n

a5 =
* O(n) to compute e;. =

Remark. Can be improved to O(n?) time. E ;
+ Foreachi: precompute cumulative sums > ax, > we Y af, > zkuk .
k=1

k=1 k=1 k=1

* Using cumulative sums, can compute ¢; in O(1) time.

slide credit: Kevin Wayne / Pearson

