COMPSCI 311: Introduction to Algorithms

Lecture 13: Dynamic Programming

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Dynamic Programming Recipe

- ▶ Step 1: Devise simple recursive algorithm
 - Flavor: make "first choice", then recursively solve remaining part of the problem
- ▶ Step 2: Write recurrence for optimal value
- ► Step 3: Design bottom-up iterative algorithm
- ► Weighted interval scheduling: first-choice is binary
- ightharpoonup Rod-cutting: first choice has n options
- ► Subset Sum: need to "add a variable" (one more dimension)

Subset Sum: Problem Formulation

- ► Input
 - ightharpoonup Items $1, 2, \ldots, n$
 - ightharpoonup Weights w_i for all items (integers)
 - ► Capacity W
- Goal: select a subset S whose total weight is as large as possible without exceeding W.
- ▶ Subset Sum: need to "add a variable" to recurrence

Step 1: Recursive Algorithm, First Try

- ▶ Let O be optimal solution on items 1 through j. Is $j \in O$ or not?
- ► SubsetSum(*j*)

```
if j = 0 then return 0

▷ Case 1: j \notin O

vmax = SubsetSum(j-1)
```

▷ Case 2: $j \in O$ if $w_i \leq W$ then

 $w_j \leq W$ then \triangleright else skip, can't fit w_j vmax = max(vmax, ?? w_j + SubsetSum(j-1) ??)

end if return vmax

► What doesn't work?

Second call to SubsetSum(j-1) no longer has capacity W. Solution: must add extra parameter (problem dimension)

Step 1: Recursive Algorithm, Add a Variable

- Find value of optimal solution O on items $\{1,2,\ldots,j\}$ when the remaining capacity is w
- ► SubsetSum(*j*,*w*)

```
\begin{array}{l} \textbf{if} \ j=0 \ \textbf{then} \ \text{return} \ 0 \\ \rhd \ \mathsf{Case} \ 1: \ j \notin O \\ \mathsf{vmax} = \mathsf{SubsetSum}(j-1, \ w) \\ \rhd \ \mathsf{Case} \ 2: \ j \in O \\ \textbf{if} \ \ w_j \leq w \ \textbf{then} \\ \mathsf{vmax} = \mathsf{max}(\mathsf{vmax}, \ w_j + \mathsf{SubsetSum}(j-1, \ w-w_j)) \\ \textbf{end} \ \ \textbf{if} \\ \mathsf{return} \ \mathsf{vmax} \end{array}
```

Recurrence

 \blacktriangleright Let $\mathrm{OPT}(j,w)$ be the maximum weight of any subset of items $\{1,\ldots,j\}$ that does not exceed w

$$\mathrm{OPT}(j,w) = \left\{ \begin{aligned} & \mathrm{OPT}(j-1,w) & w_j > w \\ & \mathrm{OPT}(j-1,w) \\ & w_j + \mathrm{OPT}(j-1,w-w_j) \end{aligned} \right\} \quad w_j \leq w$$

- ▶ Base case: OPT(0, w) = 0 for all w = 0, 1, ..., W.
- Questions
 - ▶ Do we need a base case for OPT(j, 0)?
 - \blacktriangleright What is overall optimum to original problem? $\mathrm{OPT}(n,W)$

Step 3: Iterative Algorithm

```
\begin{aligned} & \text{SubsetSum}(n,W) \\ & \text{Initialize array } M[0..n,0..W] \\ & \text{Set } M[0,w] = 0 \text{ for } w = 0,\dots,W \\ & \text{for } j = 1 \text{ to } n \text{ do} \\ & \text{ for } w = 1 \text{ to } W \text{ do} \\ & \text{ if } w_j > w \text{ then } M[j,w] = M[j-1,w] \\ & \text{ else } M[j,w] = \max(M[j-1,w],w_j + M[j-1,w-w_j]) \\ & \text{ end for } \\ & \text{ end for } \\ & \text{ return } M[n,W] \end{aligned}
```

Running Time? ⊖(nW). Note: this is "pseudopolynomial". Not strictly polynomial, because it can be exponential in the number of bits used to represent the values.

Polynomial vs. pseudo-polynomial

- ▶ So far, we've expressed complexity depending on problem size (n, |V|, |E|)
- For numbers involved (sorted array elements, edge weights, etc.), we assumed comparison, addition, etc., take constant time
- Actually, these operations depend on bit width: addition is linear, multiplication is quadratic (or better: fast multiply), etc.
- For subset sum, W appears as factor in complexity, O(nW) But W is *exponential* in the number of bits used to represent W, thus the difference!

Clicker Question 1

```
for j=1 to n do for w=1 to W do if w_j>w then M[j,w]=M[j-1,w] else M[j,w]=\max(M[j-1,w],w_j+M[j-1,w-w_j]) end for end for
```

In the computation above, can I switch outer and inner loops (outer j, inner $w \rightarrow \text{outer } w$, inner j)

A: Yes

B: No

Knapsack Problem

Introduce an additional parameter, value

- Input
 - ightharpoonup Items $1, 2, \ldots, n$
 - ightharpoonup Weights w_i for all items (integers)
 - \triangleright Values v_i for all items (integers)
 - ► Capacity W
- ightharpoonup Goal: select a subset S whose total value is as large as possible without exceeding W.
- ▶ Does the solution change ?

Clicker Question 2

Recall recurrence for subset sum: OPT(j, w)

$$= \begin{cases} \text{OPT}(j-1,w) & w_j > w \\ \max(\text{OPT}(j-1,w), w_j + \text{OPT}(j-1,w-w_j) & w_j \leq w \end{cases}$$

The solution for the knapsack problem

A: Requires an additional dimension for values

B: Is still two-dimensional, but its complexity increases

C: Is still two-dimensional, with same complexity

Same solution, just add values $v_j + \mathrm{OPT} \dots$ instead of weights

Clicker Question 3

How does the solution to the knapsack problem change if we consider reals instead of integers?

- A: Same for real weights and values
- B: Same for real values, different for real weights
- C: Same for real weights, different for real values

Least squares

Least squares. Foundational problem in statistics.

- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Calculus → min error is achieved when

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

slide credit: Kevin Wayne / Pearson

Segmented least squares

Segmented least squares.

- · Points lie roughly on a sequence of several line segments.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).
- Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

slide credit: Kevin Wayne / Pearson

Segmented least squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ with $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) = E + c L for some constant c > 0, where

- E = sum of the sums of the squared errors in each segment.
- L = number of lines.

slide credit: Kevin Wayne / Pearso

26

Dynamic programming: multiway choice

Notation.

- OPT(j) = minimum cost for points $p_1, p_2, ..., p_j$.
- = SSE for for points $p_i, p_{i+1}, ..., p_j$.

To compute OPT(j):

- Last segment uses points p_i, p_{i+1}, \dots, p_j for some $i \le j$.
- Cost = $e_{ij} + c + OPT(i-1)$. \leftarrow optimal substructure property (proof via exchange argument)

Bellman equation.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \{ e_{ij} + c + OPT(i-1) \} & \text{if } j > 0 \end{cases}$$

27 slide credit: Kevin Wayne / Pearso

Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES $(n, p_1, ..., p_n, c)$

FOR
$$j = 1$$
 TO n

For
$$i = 1$$
 to j

Compute the SSE e_{ij} for the points $p_i, p_{i+1}, ..., p_j$.

previously computed value

 $M[0] \leftarrow 0$.

For
$$j = 1$$
 to n

$$M[j] \leftarrow \min_{1 \le i \le j} \{ e_{ij} + c + M[i-1] \}.$$

RETURN M[n].

Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares problem in $O(n^3)$ time and $O(n^2)$ space.

• Bottleneck = computing SSE e_{ij} for each i and j.

$$a_{ij} \; = \; \frac{n \sum_k x_k y_k - (\sum_k x_k) (\sum_k y_k)}{n \sum_k x_k^2 - (\sum_k x_k)^2}, \quad b_{ij} \; = \; \frac{\sum_k y_k - a_{ij} \sum_k x_k}{n}$$

• O(n) to compute e_{ii} . •

Remark. Can be improved to $O(n^2)$ time.

- emark. Can be improved to $O(n^2)$ time.

 For each i: precompute cumulative sums $\sum_{k=1}^i x_k$, $\sum_{k=1}^i x_k^2$, $\sum_{k=1}^i x_k y_k$.
- Using cumulative sums, can compute e_{ij} in O(1) time.

slide credit: Kevin Wayne / Pearsor

slide credit: Kevin Wayne / Pearson