
COMPSCI 311: Introduction to Algorithms
Lecture 12: Dynamic Programming

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Dynamic Programming Recipe

I Devise recursive form for solution

I Observe that recursive implementation involves redundant
computation. (Often exponential time)

I Design iterative algorithm that solves all subproblems without
redundancy.

Recall: Fibonacci sequence, F(n) = F(n-1) + F(n-2)

F(4) = F(3) + F(2) = (F(2) + F(1)) + (F(1) + F(0))
= ((F(1) + F(0))) + F(1)) + (F(1) + F(0))

Clicker Question 1

Consider computing the Fibonacci numbers by calling the function

fib(n):
if n < 2 return n;
return fib(n-1) + fib(n-2);

The complexity of fib(n) is

A: Θ(nlog2 3)

B: Θ(1.618n)

C: Θ(2n)

D: Θ(n!)

Comparison

Greedy Divide and
Conquer

Dynamic
Programming

Formulate problem ? ? ?
Design algorithm easy hard hard
Prove correctness hard easy easy
Analyze running time easy hard easy

Weighted Interval Scheduling

I TV scheduling problem: Given n shows with start time si and
finish time fi, watch as many shows as possible, with no overlap.

I A Twist: Each show has a value vi. We want a set of shows S,
with no overlap and maximum value ∑i∈S vi.

I Greedy? It worked for case without values

I Notation:
I sj , fj : start and finish time of show (job) j
I vj = value of show j
I Assume shows sorted by finishing time f1 ≤ f2 ≤ . . . ≤ fn

I Shows i and j are compatible if they don’t overlap



Weighted Interval Scheduling: Recursive Algorithm
I Observation: Let O be the optimal solution. Either n ∈ O or

n /∈ O. In either case, we can reduce the problem to a smaller
instance of the same problem.

I Recursive algorithm: value of optimal subset of first j shows
(going backwards from j)

Compute-Value(j)
Base case: if j = 0 return 0
Case 1: j ∈ O
Let i < j be highest-numbered show compatible with j
val1 = vj + Compute-Value(i)
Case 2: j /∈ O
val2 = Compute-Value(j − 1)
return max(val1, val2)

Extracting the Solution
I Finding the solution itself is a simple modification of the same

algorithm

Compute-Solution(j)
Base case: if j = 0 return ∅
Case 1: j ∈ O
Let i < j be highest-numbered show compatible with j
O1 = {j} ∪ Compute-Solution(i)

Case 2: j /∈ O
O2 = Compute-Solution(j − 1)
return the solution O1 or O2 that has higher value

I Advice: first develop algorithm to compute optimal value;
usually easy to modify it to compute the actual solution

Recurrence

I We’ve seen recurrences for running times (and various sequences
in math)

I Here: recurrence expresses the value of an optimal solution.

I Definitions
I OPT(j) = value of optimal solution on first j shows
I pj : highest-numbered show that is compatible with j

I Recurrence

OPT(0) = 0
OPT(j) = max{vj + OPT(pj)︸ ︷︷ ︸

Case 1

, OPT(j − 1)︸ ︷︷ ︸
Case 2

}

Recursive Algorithm vs. Recurrence
I Compute-Value(j)

If j = 0 return 0
val1 = vj + Compute-Value(pj)
val2 = Compute-Value(j − 1)
return max(val1, val2)

I Recurrence

OPT(j) = max{vj + OPT(pj), OPT(j − 1)}
OPT(0) = 0

I Direct correspondence between the algorithm and recurrence
I Tip: start by writing the recursive algorithm and translating it

to a recurrence (replace method name by “OPT”)
I After some practice, skip straight to the recurrence

Clicker Question 2

OPT(j) = max{vj + OPT(pj), OPT(j − 1)}
OPT(0) = 0

The running time of this recursive solution is

A: O(n log n)

B: O(n2)

C: O(1.618n)

D: O(2n)

Running Time?

I Recursion tree

I ≈ 2n subproblems ⇒ exponential time

I Only n unique subproblems.
Save work by ordering computation to solve each problem once.



Iterative “Bottom-Up” Algorithm

WeightedIS
Initialize array M of size n to hold optimal values
M [0] = 0 . Value of empty set
for j = 1 to n do

M [j] = max(vj + M [pj ], M [j − 1])
end for

Usually we directly convert recurrence to appropriate for loop.

Pay attention to dependence on previously-computed array entries
to know in which direction to iterate.

Memoization

Intermediate approach: keep recursive function structure,
but store value in array on first computation, and reuse it

Initialize array M of size n to empty, M[0] = 0
function Mfun(j)
if M[j] = empty
M[j] = max(vj + Mfun(pj), Mfun(j-1))

return M[j]

Can help if we have recursive structure but unsure of iteration order
Or as intermediate step in converting to iteration

Clicker Question 3

The asymptotic complexity of the memoized algorithm is

A: Same as the initial recurrence

B: Between the initial recurrence and the iterated version

C: Same as the iterated version

Review

I Recursive algorithm → recurrence → iterative algorithm

I Three ways of expressing value of optimal solution for smaller
problems
I Compute-Value(j). Recursive algorithm—arguments identify

subproblems.

I OPT(j). Mathematical expression. Write a recurrence for
this that matches recursive algorithm.

I M [j]. Array to hold optimal values. Entries filled in during
iterative algorithm.

Dynamic Programming Recipe

I Devise recursive form for solution. Flavor: make “first choice”,
then recursively solve a smaller instance of same problem.

I Observe that recursive implementation involves redundant
computation. (Often exponential time)

I Design iterative algorithm that solves all subproblems without
redundancy.

Dividing into Problems

I First example: Weighted Interval Scheduling
I Binary first choice: j ∈ O or j /∈ O?

I Next example: rod cutting
I First choice has n options



Rod Cutting

I Problem Input:
I Steel rod of length n, can be cut into integer lengths

I Price based on length, p(i) for a rod of length i

I Goal
I Cut rods into lengths i1, . . . , ik such that i1 + i2 + . . . ik = n.

I Maximize value p(i1) + p(i2) + . . . + p(in)

First choice?

I Greedy? Cut length with maximum price
Or: cut piece with maximum price per length ?

I Divide and Conquer: Break rod at some (integer) point. Recurse
for pieces.

I Dynamic Programming:
Choose length i of first piece, then recurse on rest

Steps 1 and 2
Step 1: Recursive Algorithm.

CutRod(j)
if j = 0 then return 0
v = 0
for i = 1 to j do

v = max
(
v, p[i] + CutRod(j − i)

)

end for
return v

I Running time for CutRod(n)? Θ(2n)

Step 2: Recurrence

OPT(j) = max
1≤i≤j

{
pi + OPT(j − i)

}

OPT(0) = 0

Step 3: Iterative Algorithm

I Array M [0..n] where M [i] holds value of OPT(i).
Order to fill M? From 0 to n.
CutRod-Iterative
Initialize array M [0..n]
Set M [0] = 0
for j = 1 to n do

v = 0
for i = 1 to j do

v = max
(
v, p[i] + M [j − i]

)

end for
Set M [j] = v

end for

I Running time? Θ(n2) Note: body of for loop identical to
recursive algorithm, directly implements recurrence

Epilogue: Recover Optimal Solution

Run previous algorithm to fill in M array
cuts = {}
j = n
while j > 0 do

i∗ = null, v = 0 . i∗ is the selected cut, v is its value
for i = 1 to j do

if p[i] + M [j − i] > v then
i∗ = i
v = p[i] + M [i]

end if
end for
j = j − i∗

cuts = cuts ∪ {i∗}
end while


