COMPSCI 311: Introduction to Algorithms Lecture 12: Dynamic Programming Marius Minea University of Massachusetts Amherst slides credit: Dan Sheldon	Algorithm Design Techniques - Greedy - Divide and Conquer - Dynamic Programming - Network Flows
Dynamic Programming Recipe - Devise recursive form for solution - Observe that recursive implementation involves redundant computation. (Often exponential time) - Design iterative algorithm that solves all subproblems without redundancy. Recall: Fibonacci sequence, $F(n)=F(n-1)+F(n-2)$ $\begin{aligned} & F(4)=F(3)+F(2)=(F(2)+F(1))+(F(1)+F(0)) \\ & =((F(1)+F(0)))+F(1))+(F(1)+F(0)) \end{aligned}$	Clicker Question 1 Consider computing the Fibonacci numbers by calling the function fib(n): if $\mathrm{n}<2$ return n ; return fib(n-1) $+\mathrm{fib}(\mathrm{n}-2)$; The complexity of $\mathrm{fib}(\mathrm{n})$ is A: $\Theta\left(n^{\log _{2} 3}\right)$ B: $\Theta\left(1.618^{n}\right)$ C: $\Theta\left(2^{n}\right)$ D: $\Theta(n!)$
Comparison	Weighted Interval Scheduling - TV scheduling problem: Given n shows with start time s_{i} and finish time f_{i}, watch as many shows as possible, with no overlap. - A Twist: Each show has a value v_{i}. We want a set of shows S, with no overlap and maximum value $\sum_{i \in S} v_{i}$. - Greedy? It worked for case without values - Notation: - s_{j}, f_{j} : start and finish time of show (job) j - $v_{j}=$ value of show j - Assume shows sorted by finishing time $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$ - Shows i and j are compatible if they don't overlap

Weighted Interval Scheduling: Recursive Algorithm

- Observation: Let O be the optimal solution. Either $n \in O$ or $n \notin O$. In either case, we can reduce the problem to a smaller instance of the same problem.
- Recursive algorithm: value of optimal subset of first j shows (going backwards from j)

Compute-Value (j)
Base case: if $j=0$ return 0
Case 1: $j \in O$
Let $i<j$ be highest-numbered show compatible with j
val1 $=v_{j}+$ Compute-Value (i)
Case 2: $j \notin O$
val2 $=$ Compute-Value $(j-1)$
return $\max ($ val1, val2)

Extracting the Solution

- Finding the solution itself is a simple modification of the same algorithm

Compute-Solution (j)
Base case: if $j=0$ return \emptyset
Case 1: $j \in O$
Let $i<j$ be highest-numbered show compatible with j
$O_{1}=\{j\} \cup$ Compute-Solution (i)
Case 2: $j \notin O$
$O_{2}=$ Compute-Solution $(j-1)$
return the solution O_{1} or O_{2} that has higher value

- Advice: first develop algorithm to compute optimal value; usually easy to modify it to compute the actual solution

Recursive Algorithm vs. Recurrence

- Compute-Value (j)

If $j=0$ return 0
val1 $=v_{j}+$ Compute-Value $\left(p_{j}\right)$
val2 $=$ Compute-Value $(j-1)$
return max(val1, val2)

- Recurrence

$$
\begin{aligned}
& \operatorname{OPT}(j)=\max \left\{v_{j}+\operatorname{OPT}\left(p_{j}\right), \operatorname{OPT}(j-1)\right\} \\
& \operatorname{OPT}(0)=0
\end{aligned}
$$

- Direct correspondence between the algorithm and recurrence
- Tip: start by writing the recursive algorithm and translating it to a recurrence (replace method name by "OPT")
- After some practice, skip straight to the recurrence

Running Time?

- Recursion tree
- $\approx 2^{n}$ subproblems \Rightarrow exponential time
- Only n unique subproblems.

Save work by ordering computation to solve each problem once.

Iterative "Bottom-Up" Algorithm

WeightedIS
Initialize array M of size n to hold optimal values
$M[0]=0 \quad \triangleright$ Value of empty set
for $j=1$ to n do
$M[j]=\max \left(v_{j}+M\left[p_{j}\right], M[j-1]\right)$
end for
Usually we directly convert recurrence to appropriate for loop.
Pay attention to dependence on previously-computed array entries to know in which direction to iterate.

Memoization

Intermediate approach: keep recursive function structure,
but store value in array on first computation, and reuse it

$$
\begin{aligned}
& \text { Initialize array } \mathrm{M} \text { of size } n \text { to empty, } \mathrm{M}[0]=0 \\
& \text { function } \operatorname{Mfun}(\mathrm{j}) \\
& \text { if } \mathrm{M}[\mathrm{j}]=\operatorname{empty} \\
& \mathrm{M}[\mathrm{j}]=\max \left(v_{j}+\operatorname{Mfun}\left(p_{j}\right), \operatorname{Mfun}(\mathrm{j}-1)\right) \\
& \text { return } \mathrm{M}[\mathrm{j}]
\end{aligned}
$$

Can help if we have recursive structure but unsure of iteration order Or as intermediate step in converting to iteration

Clicker Question 3

The asymptotic complexity of the memoized algorithm is

A: Same as the initial recurrence
B: Between the initial recurrence and the iterated version
C: Same as the iterated version

Dynamic Programming Recipe

Dividing into Problems

- First example: Weighted Interval Scheduling
- Binary first choice: $j \in O$ or $j \notin O$?
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Review

- Recursive algorithm \rightarrow recurrence \rightarrow iterative algorithm
- Three ways of expressing value of optimal solution for smaller problems
- Compute-Value(j). Recursive algorithm—arguments identify subproblems.
- $\operatorname{OPT}(j)$. Mathematical expression. Write a recurrence for this that matches recursive algorithm.
- $M[j]$. Array to hold optimal values. Entries filled in during iterative algorithm.
- Devise recursive form for solution. Flavor: make "first choice", then recursively solve a smaller instance of same problem.

Rod Cutting

- Problem Input:

- Steel rod of length n, can be cut into integer lengths
- Price based on length, $p(i)$ for a rod of length i

- Goal

- Cut rods into lengths i_{1}, \ldots, i_{k} such that $i_{1}+i_{2}+\ldots i_{k}=n$.
- Maximize value $p\left(i_{1}\right)+p\left(i_{2}\right)+\ldots+p\left(i_{n}\right)$

Steps 1 and 2

Step 1: Recursive Algorithm.
CutRod (j)
if $j=0$ then return 0
$v=0$
for $i=1$ to j do
$v=\max (v, p[i]+\operatorname{CutRod}(j-i))$
end for
return v

- Running time for CutRod (n) ? $\Theta\left(2^{n}\right)$

Step 2: Recurrence

$$
\begin{aligned}
& \operatorname{OPT}(j)=\max _{1 \leq i \leq j}\left\{p_{i}+\operatorname{OPT}(j-i)\right\} \\
& \operatorname{OPT}(0)=0
\end{aligned}
$$

```
Epilogue: Recover Optimal Solution
    Run previous algorithm to fill in \(M\) array
    cuts \(=\{ \}\)
    \(j=n\)
    while \(j>0\) do
        \(i^{*}=\) null, \(v=0 \quad \triangleright i^{*}\) is the selected cut, \(v\) is its value
        for \(i=1\) to \(j\) do
            if \(p[i]+M[j-i]>v\) then
                \(i^{*}=i\)
                \(v=p[i]+M[i]\)
            end if
        end for
        \(j=j-i^{*}\)
        cuts \(=\) cuts \(\cup\left\{i^{*}\right\}\)
    end while
```

