				Algorithm Design Techniques
COMPSCI 311 Lecture 1 Univers slides credit: Dan Sheldon	: Introduc 2: Dynamic Marius Mi ity of Massachu	rogramming nea setts Amherst	prithms	 Greedy Divide and Conquer Dynamic Programming Network Flows
Dynamic Programming Recipe				Clicker Question 1
 Devise recursive form for solution Observe that recursive implementation involves redundant computation. (Often exponential time) Design iterative algorithm that solves all subproblems without redundancy. Recall: Fibonacci sequence, F(n) = F(n-1) + F(n-2) F(4) = F(3) + F(2) = (F(2) + F(1)) + (F(1) + F(0)) = ((F(1) + F(0))) + F(1)) + (F(1) + F(0)) 				Consider computing the Fibonacci numbers by calling the function fib(n): if n < 2 return n; return fib(n-1) + fib(n-2); The complexity of fib(n) is A: $\Theta(n^{\log_2 3})$ B: $\Theta(1.618^n)$ C: $\Theta(2^n)$ D: $\Theta(n!)$
Comparison				 Weighted Interval Scheduling TV scheduling problem: Given n shows with start time s_i and
	Greedy	Divide and Conquer	Dynamic Programming	 finish time f_i, watch as many shows as possible, with no overlap. A Twist: Each show has a value v_i. We want a set of shows S,
Formulate problem	?	?	?	with no overlap and maximum value $\sum_{i \in S} v_i$.
Design algorithm	easy	hard	hard	Greedy? It worked for case without values
Prove correctness	hard	easy	easy	Notation:
Analyze running time	easy	hard	easy	 s_j, f_j: start and finish time of show (job) j v_j = value of show j Assume shows sorted by finishing time f₁ ≤ f₂ ≤ ≤ f_n Shows i and j are compatible if they don't overlap

Weighted Interval Scheduling: Recursive Algorithm	 Extracting the Solution Finding the solution itself is a simple modification of the same algorithm 	
► Observation: Let O be the optimal solution. Either n ∈ O or n ∉ O. In either case, we can reduce the problem to a <i>smaller</i> <i>instance</i> of the same problem.		
 Recursive algorithm: value of optimal subset of first j shows (going backwards from j) Compute-Value(j) Base case: if j = 0 return 0 Case 1: j ∈ O Let i < j be highest-numbered show compatible with j val1 = v_j + Compute-Value(i) Case 2: j ∉ O val2 = Compute-Value(j - 1) return max(val1, val2) 	Compute-Solution(j) Base case: if $j = 0$ return \emptyset Case 1: $j \in O$ Let $i < j$ be highest-numbered show compatible with j $O_1 = \{j\} \cup \text{Compute-Solution}(i)$ Case 2: $j \notin O$ $O_2 = \text{Compute-Solution}(j - 1)$ return the solution O_1 or O_2 that has higher value Advice: first develop algorithm to compute optimal value; usually easy to modify it to compute the actual solution	
Recurrence	Recursive Algorithm vs. Recurrence	
 We've seen recurrences for running times (and various sequences in math) Here: recurrence expresses the value of an optimal solution. Definitions OPT(j) = value of optimal solution on first j shows p_j: highest-numbered show that is compatible with j Recurrence OPT(j) = max{v_j + OPT(p_j), OPT(j - 1)} Clicker Question 2 	 Compute-Value(j) If j = 0 return 0 val1 = v_j + Compute-Value(p_j) val2 = Compute-Value(j - 1) return max(val1, val2) Recurrence OPT(j) = max{v_j + OPT(p_j), OPT(j - 1)} OPT(0) = 0 Direct correspondence between the algorithm and recurrence Tip: start by writing the recursive algorithm and translating it to a recurrence (replace method name by "OPT") After some practice, skip straight to the recurrence 	
$OPT(j) = \max\{v_j + OPT(p_j), OPT(j-1)\}$ $OPT(0) = 0$ The running time of this recursive solution is A: $O(n \log n)$ B: $O(n^2)$ C: $O(1.618^n)$ D: $O(2^n)$	 Recursion tree ≈ 2ⁿ subproblems ⇒ exponential time Only n unique subproblems. Save work by ordering computation to solve each problem once. 	

Iterative "Bottom-Up" Algorithm	Memoization
WeightedIS Initialize array M of size n to hold optimal values $M[0] = 0 \qquad \triangleright \text{Value of empty set}$ for $j = 1$ to n do $M[j] = \max(v_j + M[p_j], M[j - 1])$ end for Usually we directly convert recurrence to appropriate for loop. Pay attention to dependence on previously-computed array entries to know in which direction to iterate.	Intermediate approach: keep recursive function structure, but store value in array on first computation, and reuse it Initialize array M of size n to empty, $M[0] = 0$ function Mfun(j) if $M[j] = empty$ $M[j] = max(v_j + Mfun(p_j), Mfun(j-1))$ return $M[j]$ Can help if we have recursive structure but unsure of iteration order Or as intermediate step in converting to iteration
Clicker Question 3	Review
The asymptotic complexity of the memoized algorithm is A: Same as the initial recurrence B: Between the initial recurrence and the iterated version C: Same as the iterated version	 Recursive algorithm → recurrence → iterative algorithm Three ways of expressing value of optimal solution for smaller problems Compute-Value(j). Recursive algorithm—arguments identify subproblems. OPT(j). Mathematical expression. Write a recurrence for this that matches recursive algorithm. M[j]. Array to hold optimal values. Entries filled in during iterative algorithm.
Dynamic Programming Recipe	Dividing into Problems
 Devise recursive form for solution. Flavor: make "first choice", then recursively solve a smaller instance of same problem. Observe that recursive implementation involves redundant computation. (Often exponential time) Design iterative algorithm that solves all subproblems without redundancy. 	 First example: Weighted Interval Scheduling Binary first choice: j ∈ O or j ∉ O? Next example: rod cutting First choice has n options

Rod Cutting	First choice?
 Problem Input: Steel rod of length n, can be cut into integer lengths Price based on length, p(i) for a rod of length i Goal Cut rods into lengths i1,, ik such that i1 + i2 + ik = n. Maximize value p(i1) + p(i2) + + p(in) 	 Greedy? Cut length with maximum price Or: cut piece with maximum price <i>per length</i> ? Divide and Conquer: Break rod at some (integer) point. Recurse for pieces. Dynamic Programming: Choose length <i>i</i> of first piece, then recurse on rest
Steps 1 and 2 Step 1: Recursive Algorithm. CutRod(j) if $j = 0$ then return 0 $v = 0$ for $i = 1$ to j do $v = \max(v, p[i] + \operatorname{CutRod}(j - i))$ end for return v return v Running time for CutRod(n)? $\Theta(2^n)$ Step 2: Recurrence $\operatorname{OPT}(j) = \max_{1 \le i \le j} \{p_i + \operatorname{OPT}(j - i)\}$ $\operatorname{OPT}(0) = 0$	Step 3: Iterative Algorithm Array $M[0n]$ where $M[i]$ holds value of $OPT(i)$. Order to fill M? From 0 to n. CutRod-Iterative Initialize array $M[0n]$ Set $M[0] = 0$ for $j = 1$ to n do v = 0 for $i = 1$ to j do v = max (v, p[i] + M[j - i]) end for Set $M[j] = v$ end for Running time? $\Theta(n^2)$ Note: body of for loop identical to recursive algorithm, directly implements recurrence
Epilogue: Recover Optimal SolutionRun previous algorithm to fill in M array cuts = {} $j = n$ while $j > 0$ do $i^* = null, v = 0$ i^* is the selected cut, v is its value for $i = 1$ to j do if $p[i] + M[j - i] > v$ then $i^* = i$ $v = p[i] + M[i]$ end if end for $j = j - i^*$ cuts = cuts \cup { i^* } end while	